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The increased use of effect sizes in single studies and meta-analyses raises new questions about
statistical inference. Choice of an effect-size index can have a substantial impact on the interpre-
tation of findings. The authors demonstrate the issue by focusing on two popular effect-size
measures, the correlation coefficient and the standardized mean difference (e.g., Cohen’s d or
Hedges’s g), both of which can be used when one variable is dichotomous and the other is
quantitative. Although the indices are often practically interchangeable, differences in sensitivity
to the base rate or variance of the dichotomous variable can alter conclusions about the magnitude
of an effect depending on which statistic is used. Because neither statistic is universally superior,
researchers should explicitly consider the importance of base rates to formulate correct inferences
and justify the selection of a primary effect-size statistic.
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In recent years, behavioral researchers have witnessed an
important change in what is considered optimal statistical
practice. With growing awareness of the differences between
statistical and practical significance, the importance of power
analysis for significance testing, meta-analysis as an integrative
strategy, and the limitations of significance testing (e.g., Har-
low, Mulaik, & Steiger, 1997; Thompson, 2002), recommen-
dations for incorporating effect-size estimates into statistical
analyses have become more definitive. For example, the fourth
edition of the Publication Manual of the American Psycholog-
ical Association (American Psychological Association [APA],
1994) “encouraged” authors to report effect sizes in statistical
analyses (p. 18). By 1999, Leland Wilkinson and the APA
Task Force on Statistical Inference wrote “always present
effect sizes for primary outcomes,” and “we must stress . . .
that reporting and interpreting effect sizes in the context of
previously reported effects is essential to good research” (p.
599). In response to this recommendation, the most recent
edition of the APA Publication Manual (APA, 2001, p. 25)
indicates the reporting of effect sizes is “almost always neces-
sary.” More than 20 journals in the field of behavioral research
now require authors to report effect-size statistics, at least for
key statistical analyses (a list is provided at http://www.



Computational Issues

Cohen’s d



rpb conceptualizes relationships in terms of the degree to
which variability in the quantitative variable and the dichot-
omous variable overlap.

One standard formula for the point-biserial correlation as
a descriptive rather than inferential statistic is as follows:

rpb �
�Y �1 � Y �2�

SY
�p1p2. (5)

SY is the standard deviation generated by dividing the total
sums of squares for the quantitative variable by N. When Y�1

	 Y�2, SY is larger than Spooled, the standard deviation used
to compute d (Equation 2), and the size of the difference
between the two standard deviations is directly related to the
size of the difference between the means (demonstrated in
the Appendix). As a result, the correlation is bounded within
the interval �1.00 to 1.00.3 The formula also includes the
terms p1 and p2, which indicate the base rates or proportions
of participants in each of the dichotomous variable groups,
with p2 
 1 – p1.

The Effect of Base-Rate Inequalities

The reason d and rpb can lead to different conclusions can
be demonstrated several different ways. As the difference
between p1 and p2 in Equation 5 increases, their product
becomes smaller, so rpb decreases. Because p1 and p2 are
not part of the formula for d, the latter statistic is unaffected
by base-rate disparities. As a result, d and rpb differ mark-
edly in terms of the degree to which they are affected by the
base rate for the two values of the dichotomous variable.
Thus, rpb can be understood as a base-rate-sensitive effect-
size measure, whereas d is base-rate-insensitive.

This difference in sensitivity to base rates can also be
stated in terms of the variance of the dichotomous vari-
able. Because the variance of this variable is a function of
the product of the base rates (i.e., with the dichotomous

groups coded as two consecutive numbers such as 0 and
1, SX

2
 p1p2 and SX 
�p1p2), variance is maximized when
p1 
 p2 
 .50. As the proportions become more discrep-
ant, the variance of the dichotomous variable becomes
smaller (see Figure 1, left vertical axis), resulting in a
decline in the value of the correlation similar to that
resulting from range restriction. Thus, rather than saying
rpb is base-rate-sensitive and d is base-rate-insensitive,
one could just as readily state that rpb is a variance-
sensitive effect-size measure, whereas d is variance-in-
sensitive. In this case, it is important to remember that the
variance referred to is that of the dichotomous variable
not the within-group or total variance for the quantitative
variable. Goodman (1991) also suggested the terms mar-
ginal-dependent and marginal-free to represent the two
classes of statistics.

In pursuit of making the difference between d and rpb

even clearer, the standard formulas can be modified to
illustrate the two critical distinctions:

d �
�Y �1 � Y �2�

�Spooled
2 (6)

and

3 The true possible range of the point-biserial correlation is
actually smaller. No correlation can reach a value of 1.00 unless
the two variables have the same distribution. Because quantitative
and dichotomous variables by definition have different distribu-
tions, the true range for the point-biserial correlation is always less
than 1.00 to �1.00 and varies depending on the distribution of the
quantitative variable. For example, Nunnally and Bernstein (1994)
reported the point-biserial correlation is restricted to the interval
from �



rpb �
�Y �1 �



a larger rpb value. For example, when p1 
 .75, a d of 0.80
is associated with rpb of .33, whereas a d of 0.50 is associ-
ated with rpb of .21. Thus, when p1 is constant, the rank
ordering of effect sizes is preserved across the two mea-
sures.

This relationship no longer exists when p1 varies across
analyses. For instance, consider the first three rows in Table
2 when p1 
 .98, d 
 0.80 is associated with rpb 
 .11.
However, as p1 approaches .50, rpb increases so that rpb 

.33 when p1 
 .75, and rpb 
 .37 when p1 
 .50. Even
though d did not change, rpb increased when the difference
in base rates was less extreme. Furthermore, what is often
considered a large d value (i.e., 0.80; Cohen, 1988) is
associated with a small value for r (i.e., .11), when the
probability of one of the two dichotomous values is only
.02. A base rate of .02 (2 cases per 100) may seem like an
extremely rare outcome, but in fact it is not. For instance,
many psychiatric conditions have a prevalence of .02 or less
in the general population, including dysthymia, agorapho-
bia, panic disorder, bipolar disorder, schizophrenia, any
drug use disorder, or any specific personality disorder (Nar-
row, Rae, Robins, & Regier, 2002; Torgersen, Kringlen, &
Cramer, 2001). The same is true for numerous medical
conditions. For example, a recent study found that 2.3% of
older males with normal levels of prostate-specific antigen
had a serious form of prostate cancer upon biopsy (Thomp-
son et al., 2004). It is also likely that many social and
experimental phenomena commonly studied by psycholo-
gists are similarly infrequent, though—as we discuss be-
low—it is often difficult to estimate the true frequency of
these events.

Table 2 demonstrates another impediment to achieving
comparable results with rpb and d, though not for mathe-
matical reasons. Many users of Cohen’s (1988) benchmarks
seem unaware that those for the correlation coefficient and

d are not strictly equivalent, because Cohen’s generally
cited benchmarks for the correlation were intended for the
infrequently used biserial correlation rather than for the
point biserial. This creates a slight advantage for d over r in
terms of the characterization of effect sizes when those
benchmarks are used for other types of correlation coeffi-
cients. For example, as demonstrated in the table, when base
rates are equal, the d value Cohen suggested as large (0.80)
corresponds to an rpb value of .37, far less than his com-
monly cited benchmark for a large r value (.50). To achieve
comparability between rpb and d when base rates are equal,
the benchmarks for small, medium, and large correlations
would need to be changed to .10, .24, and .37, respectively
(Cohen, 1988, pp. 22, 82; Lipsey & Wilson, 2001, p. 147).
Alternatively, to equate d with





by only about 10%. However, it is important to recognize
that for purposes of enhancing power, researchers often
oversample target cases or use equal-sized target and con-
trol groups, which may seriously underestimate the degree
of base-rate inequality in the population. For instance, it is
questionable whether 37% represents a reasonable estimate
of how frequently cognitive impairment occurs in many
applied settings. If testing was being conducted in an edu-
cational setting in which just 10% of the children were
expected to have some form of cognitive impairment, the
validity coefficient should drop from r 
 .32 to r 
 .23.

A similar analysis can be applied to the experimental
study of psychological phenomena, though the comparison
is often complicated by the lack of information about the
true base rates for the events studied. To illustrate, we
provide an example from social psychology. Carlson, Mar-
cus-Newhall, and Miller (1990) presented a meta-analysis
of studies investigating whether aggressive cues facilitate
aggressive responding in negatively toned situations. They
found that aggressive responding was greater when a
weapon was present than when it was not, as long as there
was no evidence the participants were aware of the research
hypothesis; the mean d value was 0.31. Most of the studies
they cited used equally sized groups, even those Anderson,
Lindsay, and Bushman (1999) later classified as field stud-
ies that should generalize to everyday life. Because these



look poor (Brennan & Prediger, 1981; Spitznagel & Helzer,
1985; Zwick, 1988). Others have contended in response that
base-rate sensitivity is appropriate to a reliability statistic
(Bartko, 1991; Shrout, Spitzer, & Fleiss, 1987). As the
base-rate inequality increases, total variance decreases. This
means that measurement error variance will tend to increase
as a proportion of the total variance, and reliability in fact
decreases.

Haddock, Rindskopf, and Shadish (1998) argued for the
odds ratio on the basis of its insensitivity to the distribution
of dichotomous variables. Some researchers have conducted
comparisons of effect-size measures under the assumption
that effect sizes should not be affected by variable distribu-
tions (Hunter, 1973; von Eye & Mun, 2003); others have not
made this assumption (Costner, 1965; Kraemer et al., 1999).
It is not surprising that the former have criticized the cor-
relation coefficient, whereas the latter have been more sup-
portive of its use. For example, Kraemer et al. (1999) were
troubled by the odds ratio’s indirect relationship to power, a
criticism that as noted above can be leveled at d and at all
other base-rate-insensitive effect-size measures.6 Compli-
cating matters is the possibility, to be discussed below, that
the purposes of the analysis may be an important factor in
deciding between base-rate-sensitive and insensitive statis-
tics.



is a better indicator of the p value resulting from the corre-
sponding significance test.

It also suggested to us that standard discussions of the
relationship between d and power have been remiss in
overlooking the issue of base rates. Most textbooks ac-
knowledge the impact of total sample size and alpha level
on power. We know of none that includes extreme base
rates in a dichotomous variable in the list of moderators of
the relationship between effect size and power for base-rate-
insensitive statistics, even though it often might be more
important in practice than alpha level. Rosnow, Rosenthal,
& Rubin (2000; Equation 10) provide an index of the
relationship between base-rate inequality and subsequent
loss of power, loss 
 1 – (nh/n�), where nh is the harmonic
mean of the group sizes and n� is their arithmetic mean.
When converted to base-rate notation, the formula indicates
that the relative loss of statistical power from unequal
sample sizes is 1 � 4p1 p2. Thus, when base rates are equal,
there is no loss of power [1 � 4(.5) (.5) 
 0]. However,
when 95% of the participants are in one group and 5% are
in the other, power declines by 81% [1 � 4(.95) (.05) 

.81]. Because variance in the dichotomous variable is de-
termined by p1 p2, it also can be seen that, all other factors
being equal, power is directly proportional to the variances
indicated in Figure 1. That is, power is at a maximum
(and relative loss is at a minimum) in the center of the
figure when p1 and p2 
 .50 but drops precipitously as the
base rates diverge. Thus, Figure 1 simultaneously illus-
trates constraints on the size of rpb (left vertical axis) and
the relative power associated with d (right vertical axis).
Discussions of power should straightforwardly indicate
the role of base rates in power analysis. In the absence of
this information, the uninformed user can easily overes-
timate the power of the study based on d.

2. r is a more flexible statistic.

The correlation coefficient can be computed for any com-
bination of dichotomous and quantitative variables. This is
an extremely useful characteristic when attempting to make
comparisons across a variety of study designs, as is some-
times the case in meta-analysis. Rosenthal (1991) and col-
leagues (Rosenthal et al., 2000) have provided methods for
the use of r as a general indicator of magnitude that is
applicable in almost any study. This sort of flexibility is
unusual among statistics. Though d can be used when both
variables are dichotomous (Haddock et al., 1998), it cannot
be used when both are quantitative.

The greater practical flexibility of r corresponds to the
broader relevance of the concept of association or relation-
ship versus group differences. In almost any circumstance in
which a researcher is interested in considering two variables
in conjunction with one another, that interest can be con-
ceptualized in terms of an association between the variables.

In contrast, the concept of differences between groups rep-
resents a special case of understanding contingent relation-
ships.

3. r is integral to general linear models.

r is a cornerstone of multiple regression statistics, includ-
ing the standard error of estimate, the regression coeffi-
cient, and the index of association. Indeed, r is central to
the general linear model in all its forms. This relationship
makes r a much more useful statistic than d when the goal
of the analysis is prediction of an outcome (Costner,
1965).

One implication of this relationship is that even a dichot-
omous variable associated with a large d value may not be
a particularly useful predictor when the base rates are very
different. For example, Entry 6 of Table 3 suggests that
individuals who are instructed to underreport pathology on
the Minnesota Multiphasic Personality Inventory (MMPI)
produce validity indicator scores that are on average about
one standard deviation higher (d 
 0.94) than those gener-
ated under normal instructions, a large effect. Suppose that
in voluntary psychiatric settings only 2% of respondents
have a vested interest in appearing overly healthy. Faking
then turns out to have little relationship to respondents’
scores (r 
 .131), even with the same standardized mean
difference. Consequently, in the absence of information
about the true base rate of underreporting, covarying or
removing potentially invalid cases could result in unaccept-
ably small improvements in scale validity (e.g., Piedmont,
McCrae, Riemann, & Angleitner, 2000).

4. r is dependent on base rates, which has interpretive
meaning in applied settings.

It has been suggested that the effect of base rate on the
correlation coefficient can have interpretive value.

Constraints on correlations associated with differences in distri-
bution inherent in the constructs are not artifacts but have real
interpretive meaning. . . . The observed correlation between
smoking and lung cancer is about .10 . . . . There is no artifact
of distribution here; even though the risk of cancer is about 11
times as high for smokers, the vast majority of both smokers and
nonsmokers alike will not contract lung cancer, and the rela-
tionship is low because of the nonassociation in these many
cases. (Cohen, Cohen, West, & Aiken, 2003, p. 54)

Similarly, as the proportion of individuals attempting to
underreport on the MMPI declines, the proportion of false
positive cases increases. rpb changes to reflect this decline in
predictive power. Consistent with the literature on maxi-
mizing the accuracy of diagnostic inferences (e.g., Meehl &
Rosen, 1955), this makes r a more ecologically valid indi-
cator of the effectiveness of the dichotomous variable as a
predictor of the outcome than d when the true base rate is
considered. This is a particularly valuable feature of the
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correlation coefficient as an indicator of the extent to which
one variable can achieve practical utility as a predictor of
another.

Even so, it would be a mistake to use the correlation
coefficient as sufficient evidence of the relative impor-
tance of a risk factor. For example, more than half the
American population is now considered overweight if not
obese (Flegal, Carroll, Ogden, & Johnson, 2002). If the
proportion of overweight adults continues to rise (diverg-
ing more from a base rate of .50), the correlation between
being overweight and medical complications associated
with excess weight in the general population will actually
decline, even as weight continues to increase in impor-
tance as a risk factor.

Advantages of d Over r

1. Mean differences are particularly relevant for ex-
perimental or treatment effects.

Just as the nature of r makes it a more useful statistic
when the goal is to determine the relationship between a
predictor and a criterion, the nature of d makes it a more
useful and readily understood statistic when the goal is
simply to determine the amount of difference in the
impact of two experimental conditions or treatments.
However, as was noted in connection with the discussion
of Figure 2, d is not the best indicator of the overall
societal impact of an intervention if the population of
individuals who receive the treatment is small relative to
the total population.

2. d behaves more intuitively.

The sensitivity to base-rate differences can lead to some
counterintuitive results for r. For example, suppose after

preliminary analysis a researcher decides to increase the
sample size as a means of increasing power. If the subse-
quent recruitment rate varies across groups and exacerbates
a difference in base rates, the overall correlation can actu-
ally decline as a result of recruiting, though d does not. On
the other hand, a decline in r can be used to warn the
researcher that the sampling method is inefficient.

A second case of base-rate sensitivity producing unex-
pected results can occur when subgroups are combined. In
a recent study (Blanchard, McGrath, Pogge, & Khadivi,
2003), college students completed the MMPI under instruc-
tions either to “fake bad” in a manner appropriate to mimic
the results for someone not guilty by reason of insanity
(forensic feigners) or to achieve psychiatric hospitalization
(psychiatric feigners). These groups were then compared
with psychiatric patients who completed the MMPI under
standard instructions (see Table 4). When forensic feigners
were compared with psychiatric patients on eight indicators
of malingering, the mean d value was 1.98, whereas the
mean d for comparing psychiatric feigners to psychiatric
patients was 2.39. When both groups of feigners were
combined in a composite analysis, the mean d value was
2.20, falling between the two subgroup means as one would
expect.

Across the same eight predictors, the mean correlation
between group membership and scale score was .39 for
forensic feigners and .49 for psychiatric feigners. However,
when the two groups were combined, so that the number of
feigners was doubled, the base rate of feigners increased
from .053 in the forensic condition and .061 in the psychi-



had increased), the mean correlation increased substantially
to .54.8

3. d estimates effects independent of base rates.

A case may be made for base-rate-insensitive statistics as a
general indicator of effect size when the base rate is subject
to change across time and situation. Suppose the goal is to
estimate the degree to which psychotherapy has been help-
ful for depression. If r is used to evaluate the relationship
between treatment choice and ratings of improvement, the
statistic will lose generalizability as the proportion of the
population of depressives who have received treatment
changes. In addition, to the extent that base rates fluctuate
from sample to sample for nonsubstantive reasons when
conducting a meta-analysis, one would expect greater con-
founding variability across studies in r (which responds to
these nonsubstantive fluctuations), when compared with d
(which does not).

As a result, d can provide a better estimate of the “trans-
portability” of an effect to an alternative context where the
base rates differ. For instance, parental susceptibility to
stress may have a very small association, as measured by r,
with the incidence of child physical abuse when studied in
the general population where the incidence of abuse is quite
low. These findings would suggest that interventions de-
signed to bolster coping and stress resistance in parents may
have little practical value for actually reducing abuse. How-
ever, if the same finding is accompanied by a relatively
large d value, it would suggest that parental susceptibility to
stress is nonetheless relatively important in the limited
number of cases in which abuse actually occurs. As such,
the d value accurately reveals that the stress–abuse relation-
ship will become more apparent in settings in which the
base rate for abuse is higher, suggesting, for example, that
parental susceptibility to stress should be a more meaningful
target of intervention for families in many clinical or foren-
sic settings. As noted previously, the lack of sensitivity to
base-rate change has by itself led some writers to prefer
base-rate-insensitive statistics.

Choosing What to Report and How to Interpret
the Effects

So both statistics have some desirable characteristics.
How then is one to proceed? Some of the discussion sug-
gests r is particularly suited for cases in which the task is to
evaluate criterion-related validity. d is more appropriate
when the goal is to determine the effect of an intervention or
experimental manipulation. Furthermore, still other statis-
tics may be more appropriate when the issue has to do with
risk factors for negative outcomes. At times the distinction
between these contexts may not be straightforward though.
For example, though most of the studies that have evaluated
the effectiveness of the MMPI as an indicator of faking

good or faking bad have used experimental designs, these
are analog studies of a prediction problem, and so r would
typically be the more appropriate effect-size indicator as-
suming an ecologically valid estimate of the base rate is
available. Similarly, even in experimental social research, in
which d is the more commonly used effect size, the ultimate
goal can be the prediction of real-world outcomes (e.g.,
Anderson et al., 1999; Funder & Ozer, 1983), a goal for
which r is again defensibly the better measure. The preced-
ing discussion leads us to the following recommendations,



impact in real-world situations. A predictor that the corre-
lation coefficient suggests is fairly weak can in fact prove to
be quite powerful when considered in light of the inherent
difficulty of predicting a rare phenomenon.

Several different approaches to the interpretation of the
effect size can be suggested that take these multiple per-
spectives into account. For example, Rosenthal and Rubin
(1982) recommended the binomial effect-size display as a
general indicator of the true size of an effect regardless of
the distributions of any dichotomous variables involved.
However, this argument has been strongly criticized (e.g.,
Hsu, 2004).

Instead of relying on newer statistics, two options are
available that use the familiar d and rpb statistics. One
option would involve the use of the standard fixed interpre-



indicate the d



of both r and d or through simultaneous comparison of one
statistic to both standard and adjusted interpretive bench-
marks. With regard to the latter possibility, we are reminded
of the concerns Cohen (1988) raised with the introduction of
his benchmarks.

The terms “small,” “medium,” and “large” are relative not only
to each other but to the area of behavioral science or even more
particularly to the specific content and research method being
employed . . . [T]here is a certain risk inherent in offering
conventional operational definitions for these terms for use . . .
in as diverse a field of inquiry as behavioral science. (p. 25)

Although some progress has been made in suggesting
benchmarks that are appropriate to specific areas of behav-
ioral investigation (e.g., Hemphill, 2003; Richard et al.,
2003), the preceding discussion suggests that base rates also
can be used to adjust benchmarks to the situation. At the
same time, it is not our intention to suggest that all effects
based on disparate base rates should be interpreted from
multiple perspectives. The researcher should evaluate
whether it is important to understand an effect indepen-
dently of the base rates that hold in a particular setting,
whether it is important to consider the impact of base rates
on the potential for prediction, or both. Effect sizes cannot
be understood in a vacuum, and researchers have an obli-
gation to consider the context or contexts in which an effect
is to be understood.
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