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Exner, 1993) in 8 relatively large samples, including (a) students, (b) experienced re-
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searchers, (c) clinicians, (d) clinicians and then researchers, (e) a composite clinical
sample (i.e., a to d), and 3 samples in which randomly generated erroneous scores
were substituted for (f) 10%, (g) 20%, or (h) 30% of the original responses. Across
samples, 133 to 143 statistically stable CS scores had excellent reliability, with me-
dian intraclass correlations of .85, .96, .97, .95, .93, .95, .89, and .82, respectively. We
also demonstrate reliability findings from this study closely match the results derived
from a synthesis of prior research, CS summary scores are more reliable than scores
assigned to individual responses, small samples are more likely to generate unstable
and lower reliability estimates, and Meyer’s (1997a) procedures for estimating re-
sponse segment reliability were accurate. The CS can be scored reliably, but because
scoring is the result of coder skills clinicians must conscientiously monitor their
accuracy.

Scoring a Rorschach according to the Comprehensive System (CS; Exner, 1993) is
a two-step process. First, a sequence of scores is produced for each patient. This
grid of data has rows that designate each response given to the 10 inkblots and col-
umns that contain the specific scores that quantify salient response features. Next, a
structural summary is generated. As its name implies, the structural summary pro-
vides sums that correspond to each of the scores (columns) aggregated across all re-
sponses (rows). In addition, the structural summary contains numerous ratios and
indexes derived from the combination of these summary scores.

Given the preceding, CS scoring reliability can be evaluated in one of three
primary ways. First, one can examine the patient-level reliability of summary
scores. Here, consistency is evaluated by comparing independently generated
summary scores across all patients in a sample. Attention is not given to the
scores assigned to each and every response. Second, one can examine the re-
sponse-level reliability of specific score options. Here, each unique score option
(e.g., W, D, Dd, S, DQ+, DQo, etc.) is considered separately and consistency is
evaluated across all responses in a sample, regardless of which patient provided
the responses. Attention is not given to the manner in which scores aggregate to
characterize individual patients. A third approach examines the response-level
reliability of multiscore response segments. Like the second approach, consis-
tency is evaluated across each response in a sample, regardless of which patient
produced the response. However, instead of considering each specific score, this
approach organizes scores into meaningful segments such that unanimous agree-
ment is evaluated across all location scores, all developmental quality scores, all
determinant scores, and so on. This is a more general type of analysis that does
not give attention to the distinct score options within a segment.

Meyer (1997a, 1997c) organized interrater reliability information pertaining to
the third approach in a meta-analytic review that examined 10 commonly used re-
sponse segments. Data were obtained from 16 studies published in the Journal of
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ally form the foundation for interpretation and statistical analyses. As a result,
summary scores address the applied reliability of CS scoring, and it is essential to
understand the precision that accompanies these scores.

As a final issue, Meyer’s (1997a) meta-analysis was derived from the published
literature. Because researchers may be more conscientious scorers than clinicians
working in their day-to-day practice, the meta-analytic results may not character-
ize CS reliability in an applied setting. Thus, it would be optimal to evaluate reli-
ability using samples that include working clinicians.

In this study, we address each of the preceding issues. First, we report the
chance-corrected reliability of CS summary scores in eight diverse samples. In
five of the samples, we examined traditional interrater reliability coefficients. In



METHOD

Samples

To answer questions about CS reliability with some degree of confidence, we gath-
ered samples that varied along a number of parameters. Our goal was to obtain rela-
tively large samples so there would be a sufficient degree of between-subject
variance for each Rorschach score. Ultimately, we collected eight data sets to ex-
amine 165 summary scores. The scores we examined are all those that are found on
the newest revision of the CS structural summary (Exner, 2001) and those that were
on the previous version of the structural summary (Exner, 1995). The eight data sets
described here were the only samples we examined for this study and the results
were not culled from a larger set of findings. Additionally, within each sample, our
analyses employed all usable information from every rater and target protocol. At
no time were any data points excluded because of the results they produced.

Sample 1—Student coders. This sample of 66 outpatient protocols was
derived from two sources. The first consisted of 23 protocols that had been scored
by Gregory Meyer and a bachelor’s level research assistant who had no prior as-
sessment experience and was being trained to administer and score the CS. Al-
though Meyer (e.g., 1997b) reported on the reliability for 63 protocols in this data
set, most of his archival records only contain summary information about the per-
centage of agreement observed across response segments. The 23 protocols used
here are all those in which two complete sets of independently derived scores were
available.

These protocols were obtained when the research assistant was beginning to
learn the CS scoring rules. Unlike scoring accuracy, scoring reliability is an index
of agreement among fallible coders. As such, the least proficient or least experi-
enced scorer in a sample largely determines reliability values.1 Consequently,
even though Gregory Meyer is an experienced rater, because his scoring partner
was a student in training it is most appropriate to consider the resulting coefficients
as indicating the reliability of a student rater.

The second source of data consisted of 43 outpatient protocols that were re-
cently used as part of another research project (see Meyer, Riethmiller, Brooks,
Benoit, & Handler, 2000). Each protocol was independently scored by three grad-
uate students who had completed a semester-long Rorschach course. More than
half of these protocols (i.e., 24 of 43) had been used for training purposes to ensure
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scores from 5 were randomly selected. Thus, the final sample consisted of 19 proto-
cols, each of which had been scored independently five times by one of 95 different
clinicians. Out of these 95 clinicians, 21 had only attended Rorschach Workshops’
basic tutorial, which is designed for clinicians with no prior exposure to the CS. The
remaining clinicians had some familiarity with the CS prior to taking a workshop.

The 19 reliability protocols were culled from a sample of outpatients who had
been tested at the Payne Whitney Clinic between 1984 and 1988. All patients had
been assigned a personality disorder diagnosis, although this was not necessarily the
primary diagnosis. Records were selected from the larger pool of patients to ensure
nonewereoverlyshort, long,orconstricted.Furthermore, the researchassistantwho
gathered the protocols was instructed to select records only if they were “reasonably
complex and difficult to score.” In combination, these selection procedures produce
more disturbed records than are typically found in an outpatient sample. The selec-
tion criteria were designed to serve two goals. First, by excluding short and con-
stricted protocols, the goal was to eliminate those that would be very easy to score
and therebyobtainmoremeaningful reliabilitydata.Second,byexcludingvery long
protocols, it was hoped that raters would not view the task as overly taxing, thereby
ensuring a maximal return rate from the volunteer clinicians.

Sample 4—Applied reliability. For this sample, we obtained 69 protocols
that were first administered, scored, and used by clinicians as part of their day-to-
day work at the Austin Riggs Center, Stockbridge, MA. Later, these protocols were
independently scored by Fowler or Piers for research purposes. Because the proto-
cols from this sample were initially used for clinical purposes, this sample allowed
us to determine the reliability of CS scoring in a nonresearch, applied setting. The
patients in this sample were predominantly young females who were receiving
long-term inpatient care for significant psychopathology (most had multiple Axis I
and Axis II disorders).

Sample 5—Composite clinical sample. Reliability coefficients are con-
strained by the degree of variability in the characteristic being rated (see follow-
ing). For our analysis of summary scores, we examined 165 distinct scores that are
part of a CS structural summary. To ensure that each score had roughly the degree
of variability that would be encountered by clinicians working in psychiatric set-
tings, the four samples of clinical data (i.e., Samples 1 to 4) were combined to form
a single composite sample. For Sample 3, in which five raters scored 19 protocols,
we simply selected protocols from two raters chosen at random. The composite
sample thus contained 219 protocols that were independently rated by two
individuals.

To determine whether these 219 protocols would generalize to a realistic psy-
chiatric setting, they were compared to a sequential series of 440 inpatients and
outpatients seen at the University of Chicago Medical Center (UCMC)who had an
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Across the 165 mean comparisons with Rater 1, the UCMC sample had lower
scores than the composite reliability sample on Form Dominated Diffuse Shad-
ing(i.e., FY; r = –.251, T score = 5.19) and higher scores than the composite on un-
usual Form Quality (i.e., Xu%; r = .263; T score = 5.45). Across 165 mean
comparisons with Rater 2, the UCMC sample had a higher mean than the compos-
ite sample on just the Art content code (r = .252; T score = 5.20). Thus, there were
no mean differences that replicated across both raters.

Overall, the results from these analyses clearly suggest that the composite reli-
ability sample approximates the kinds of cases and data one would encounter in
applied practice with inpatients and outpatients. Out of 660 tests of variance or
mean differences, there were only two replicated differences, both of which sug-
gested the composite sample may artificially produce somewhat lower reliability
coefficients. Thus, even though the composite sample combined four diverse pri-
mary samples, it accurately represents the type of patients that would be encoun-
tered in a medical center and it accurately represents the type of raters that would



neglects certain coding decisions, or all of these. When these types of systematic er-
ror affect one coder but not the other, reliability is reduced. Even though both sys-
tematic and random error lower CS coding reliability, we believe it is useful to
understand the impact of purely random error on the coding process.

To insert randomly generated error into the initial responses, we used the fol-
lowing procedures. First, to determine which responses in a protocol should be al-
tered, a uniform distribution of 10,000 random numbers between 1 and 10 was
generated. This distribution was used in a sequential fashion. The first number in-
dicated which Rorschach card should have a response altered. If this card only had
one response, that response was changed. If the designated card had more than one



not been present. To do so would have produced very pathological looking re-
sponses. Instead, we allowed base rates to determine whether the “score-present”
option should be assigned. For instance, the response “Wv CF.YFo Art” has the
score-present option for six categories (i.e., Location, Developmental Quality,
Color, Diffuse Shading, Form Quality, and Art content) and the no-score option
for the remaining 52 categories (i.e., Human Movement, Texture, Pairs, Animal
content, Household content, Z Scores, Fabulized Combinations, Aggressive
Movement, etc.). To alter the assigned W score, the first non-W location from the
random list (i.e., either D or Dd) was inserted. To alter the remaining score-present
options, a randomly generated alternative was inserted from the list (i.e., either +,
o, or v/+ for Developmental Quality; FC, C, or no-C, for the Color category; FY,
Y, or no-Y from the diffuse Shading category; +, u, or – from the Form Quality cat-
egory; and no-Art from the Art Content category). For the categories with an initial
no-score option, simple base rates (i.e., the randomly generated list) determined
whether a score-present or no-score option was assigned to the new response. For
instance, base rates determined whether Ma, Mp, or no-M would be the appropri-
ate score for the Human Movement category.

Once a score had been used from the list of 3,500 random scores, it was crossed
off. Within a category, the pool of scores was also exhausted. Thus, if a randomly
generated W had been skipped during the search for the next available D or Dd, it
would be inserted in the next possible instance (i.e., when the next original D or Dd
response was changed). This step ensured the newly assigned scores would have
roughly the same base rates as the existing scores.

For determinant scores, additional rules were developed to simplify the pro-
cess. A proportion of responses containing determinants other than Pure Form (F)
were automatically changed to F responses. The remaining responses with non-F
determinants were altered in the manner described previously. Finally, any F re-
sponse was changed to a randomly generated determinant or determinant blend,
with blends determined randomly by the base rates for every determinant option.

Reliabilitycoefficients for thesesampleswerecalculatedbycomparing theorigi-
nal (i.e., correct) scores to the scores derived from the protocols in which 10%, 20%,
or 30% of the responses had been changed. Thus, the original scoring was treated as
Rater 1 and the revised scoring with random error was treated as Rater 2.

Data Analysis

Statistics. To assess the reliability of response-level scores, Cohen’s (1960)
kappa was used. To assess the patient-level reliability of summary scores, we calcu-
lated intraclass correlation coefficients (ICC) using a one-way random effects
model (Shrout & Fleiss, 1979, Model 1; also see McGraw & Wong, 1996). The ICC
is a chance-corrected reliability coefficient suitable for continuous data and equiva-
lent to kappa under appropriate conditions (Fleiss & Cohen, 1973; Shrout, Spitzer,

CS INTERRATER RELIABILITY 229



& Fleiss, 1987). According to Shrout and Fleiss (1979), a one-way random effects
model treats each protocol as if it were scored by a different set of raters who are
randomly selected from a larger population of raters. Under this model, the effects
due to raters, to the interaction of raters and protocols, and to random error cannot
be separated. As McGraw and Wong (1996) stated in more simplified terminology,
for any given protocol, the designation of who is considered Rater 1 and who is con-



2nd reliability design) relied on the same rationale when confronted with a sample
that had a mix of different raters but not a distinct pair of raters for every
participant.

Furthermore, because of the documented equivalence between the Model 1
ICC and kappa (Fleiss, Nee, & Landis, 1979), the methodological literature on
kappa is relevant as well. Fleiss (1971) explicitly generalized kappa to the situa-
tion “where each of a sample of subjects is rated on a nominal scale by the same
number of raters, but where the raters rating one subject are not necessarily the
same as those rating another” (p. 378). Fleiss et al. reaffirmed the appropriateness
of computing kappa under these circumstances and further clarified that kappa can
be computed in situations when different participants are rated by “different sets of
equal numbers of raters” (p. 974). Given that Fleiss et al.’s article also documented
the equivalence of kappa and the Model 1 ICC and was published in the same year
as Shrout and Fleiss’s (1979) ICC article, it seems clear that Fleis would believe it
is appropriate to use the Model 1 ICC in our data sets. In practice, it is also the case
that many prominent, large-scale, grant-funded studies have computed kappa from
a design like that found in our Samples 1, 2, 4, and 5. These are studies in which
two raters (R1 and R2) evaluate some proportion of the cases, two different raters
(R3 and R4) evaluate another proportion of the cases, and different pairs of raters
(e.g., R5 and R6) or shuffled pairs of raters (e.g., R1 and R4, R2 and R3) evaluate
additional portions of the sample. The following citations are for field trials with
the Diagnostic and Statistical Manual of Mental Disorders (4th ed., American
Psychiatric Association, 1994) or the International Classification of Diseases
(ICD–10; World Health Organization, 1992) that employed this type of statistical
design: Buysse et al. (1994), First et al. (1995), Keller et al. (1995), Loranger et al.
(1994), Volkmar et al. (1994), and Williams et al. (1992).

If the preceding still leaves doubt about the limiting assumptions of the Model 1
ICC, three other considerations also support our use of this model. First, Shrout
and Fleiss (1979) indicated how for a given set of data, the one-way random effects
model generally provides more conservative (i.e., lower) reliability estimates than
the alternative two-way random effects model or two-way mixed effects model.
Second, the alternative ICC models contain assumptions that clearly would have
been violated in our Samples 1, 2, 4, and 5. Model 2, the two-way random effects
model, assumes that the same fixed coders have rated every protocol. Model 3, a
two-way mixed effects model, further assumes the fixed number of coders in the



ability findings to other potential raters). Neither of these assumptions fit for any
of our data sets.

Finally, from a practical perspective, when evaluating this issue empirically
with our data it makes no difference if we used the Model 1 or Model 2 ICC. In the
composite sample of 219 protocols, across the 164 CS scores that were assigned by
at least one rater, the average difference between the Model 1 ICC and the Model 2
ICC was –.0000496510 (with Model 2 results being slightly larger, as predicted by
Shrout & Fleiss, 1979) and the maximum difference was –.0050982338. Because
we report reliability coefficients to two decimal places, it would not make a differ-
ence which ICC model results we reported. However, the results reported in the
following are all derived from the Model 1 ICC.4

Statistical assumptions: Normality and CIs. Another common assump-
tion of the one-way random effects model (and all alternative models) is that the
rated characteristic is normally distributed across participants (McGraw & Wong,
1996; Shrout & Fleiss, 1979). This assumption presents a potential problem for
Rorschach scores because many variables have skewed and kurtotic distributions.
However, Lord and Novick (1968, pp. 162–166) pointed out how the key assump-
tion for the ICC is that each rater is targeting an equii8,



characteristic being rated does not differ from participant to participant (Finn,
1970; Jones, Johnson, Butler, & Main, 1983; Lahey, Downey, & Saal, 1983; Sel-
vage, 1976; Whitehurst, 1984). Thus, in a sample of 10 patients, if it just so happens
that all 10 patients have the same or nearly the same value for some CS score, such
as M (Human Movement) or P (Popular), it would be impossible or virtually impos-
sible to demonstrate that scoring was reliable in this sample—even if the coders
scored accurately and with considerable agreement. This constraint with the ICC is
analogous to the constraint encountered when calculating kappa coefficients on
variables with extreme base rates (see Grove, Andreasen, McDonald-Scott, Keller,
& Shapiro, 1981; Meyer, 1997a).

As with kappa, several authors have proposed solutions to correct ICCs for re-
strictedbetween-subjectsvariance.Onefactor that couldcause restrictedvariance is
a skewed distribution (Whitehurst, 1984). Many Rorschach variables are inherently
skewed because most patients receive values of 0 or 1, whereas a limited number ob-
tain values of 3, 4, 5, or higher. Such distributions have restricted variances relative
to distributions in which the scores are normally or randomly distributed across the
full range of possible scores (Finn, 1970, 1972; Selvage, 1976; Whitehurst, 1984). If
it is reasonable to assume that scores can be randomly distributed across the full
rangeofvalues (i.e., ifchancecanbedefinedaswhathappenswhenratersblindlyas-
signscoresacross the rangeofpossiblevalues,without regard to relative frequency),
then an alternative statistic, Finn’s r (rF), can be used to generate chance-corrected
reliability. Although the merits of rF have been debated (see Cicchetti, 1985;
Whitehurst, 1985), it should be noted that rF corrects ICC coefficients in the same
way that kappan (Brennan & Prediger, 1981) corrects Cohen’s kappa for problems
induced by extreme base rates (Cicchetti, 1985; Meyer, 1997a).

Lahey et al. (1983) proposed an alternative solution, recommending that ICCs
should not be calculated unless scores have statistically significant variance across
targets. Although this is reasonable in some respects, statistical significance de-
pends on power, so even a small degree of between-subject variance will be signif-
icant if there are many target protocols. Another problem is that scores are less
likely to be statistically significant across participants when raters are sloppy, yet
more likely to be significant when raters are accurate. This is because significance
is determined by the F ratio comparing between-subject variance to within-subject
variance. Assuming the same small degree of between-subject variance (MSB),
more reliable coders will produce a smaller degree of within-subject variance
(MSW) and a larger F value than sloppy coders who will produce a larger MSW
and a smaller F value. Thus, the same small degree of between-subject variance is
more likely to be statistically significant for good raters than poor raters. If one
used significance to determine when an ICC should be calculated, good coders
would be held to a more demanding standard than poor coders because they would
have to demonstrate reliability on a smaller degree of genuine construct variance
(i.e., a smaller MSB). This penalizes good raters who correctly identify samples
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with minimal between-subject variance in the same way that kappa penalizes good
raters who independently determine that a score occurs infrequently (Meyer,





TABLE 1
The Reliability of 165 Comprehensive System Structural Summary Scores: ICCs for Four Clinical Samples, a Composite Clinical Sample, and Three

Experimentally Altered Samples Containing 10%, 20%, and 30% Random Scoring Error

Statistically Stable Scores (Base Rate ≥ .01)
Statistically Unstable

Scores No. of
Scores
Never

Assigned

% in ICC Classification

Samples N M R k
No. of
Scores

Mdn
ICC

M
ICC

Poor
< .40

Fair
.40–.59

Good
.60–.74

Excellent
≥ .75

No. of
Scores

Mdn
ICC

M
ICC

Clinical samples
1. Student 66 1,407 2 133 .85 .82 .008 .030 .165 .797 27 .49a .51a 5
2. Experienced 65 1,299 2 140 .96 .95 .000 .000 .007 .993 20 .88 .83 5
3. Clinicians 19 388 5 135 .97 .91 .015 .007 .096 .881 15 .59 .66 15
4. Applied 69 1,667 2 139 .95 .94 .000 .000 .022 .978 24 .89 .88 2
5. Composite 219 4,761 2 138 .93 .91 .000 .000 .029 .971 26 .83 .83 1
Forced random error samples
6. 10% random 57 1,378 2 143 .95 .94 .000 .000 .007 .993 16 1.00 .89 0
7. 20% random 57 1,378 2 142 .89 .88 .000 .000 .042 .958 17 .87 .76 0
8. 30% random 57 1,378 2 141 .82 .80 .007 .050 .206 .738 18 .84 .71 0

Note. ICC = intraclass correlation coefficients; N = number of target patients who provided Rorschach protocols; M R = mean number of responses contained in the
protocols (averaged across raters); k = number of raters who coded each protocol.

aFor six variables, one rater never assigned a score, whereas the other rater assigned it one time across the 1,407 responses. In each of these instances, the ICC was zero.



Sample 3, the clinician sample in which 19 protocols were scored five separate
timesbya totalof95differentclinicians,had135statisticallystablescores,15unsta-
ble scores, and 15 scores that were never assigned. The 15 unstable scores had a me-



quite closely to scores that were assigned as part of a formal research investigation.
The 24 unstable scores in this sample had a median of .89 (M = .88), suggesting the
clinicians and researchers also scored these variables reliably.

The composite sample of 219 protocols had 138 statistically stable scores, 26
unstable scores, and one score (FQf+) that was never assigned. The stable coeffi-
cients had a median value of .93 (M = .91) and ranged from a low of .62 to a high of
1.0. Four variables had good reliability (C'F, FV, INC1, ALOG), whereas the re-
maining 134 stable scores (97.10%) had excellent reliability. The unstable vari-
ables had a median of .83 (M = .83). One of these scores (TF) would be classified
as having fair reliability, 4 would be classified as good (MQnone, SQ+, C', (Ad)),
and the remaining 21 would be classified as having excellent reliability.



TABLE 2
The Reliability of a Comprehensive System Structural Summary: Intraclass Correlation Coefficients

for the Composite Clinical Sample Containing 219 Rorschach Protocols

LOCATION DETERMINANTS CONTENTS SPECIAL SCORES
FEATURES BLENDS SINGLE H = .98 COGNITIVE SPECIAL
Zf = .98 M = .96 (H) = .93 SCORES
ZSum = .98 Color Shading = .87 FM = .95 Hd = .92 Lv1 Lv2
ZEst = n/c m = .92 (Hd) = .88 DV = .84 .80a

All Blends = .93 FC = .83 Hx = .96 INC = .74 .82
W = .99 CF = .84 A = .99 DR = .82 .85
(Wv = .92) C = .92 (A) = .94 FAB = .90 .81
D = .99 Cn = .97a Ad = .95 ALOG = .69
Dd = .98 FC’ = .86 (Ad) = .72a CON = .76a

S = .94 C’F = .62 An = .92
C' = .71a Art = .91 Raw Sum6 = .91

DQ FT = .78 Ay = .84 Wgtd Sum6 = .90
(FQ–) TF = .54a Bl = .98

+ = .98 (.96) T = .97a



unstable scores. The statistically unstable scores had a median of 1.0 (M = .90). The
statistically stable scores had a median of .95 (M = .94) and ranged from a low of .68
to a high of 1.0. One variable (TF) had reliability values in the good classification
range, whereas the remaining 142 (99.30%) fell in the excellent range.

Sample 7, in which 20% of the responses had been changed to random error,
contained 142 stable scores and 23 unstable scores. The statistically unstable
scores had a median of .84 (M = .78). The statistically stable scores had a median of
.89 (M = .88) and ranged from a low of .63 to a high of 1.0. Six variables had reli-
ability values in the good classification range (TF, Idio, P, AB, Lambda, OBS) and
the remaining 136 (95.77%) fell in the excellent range.

Sample 8, in which 30% of the responses were randomly generated error, con-
tained 141 stable scores and 24 unstable scores. The statistically unstable scores
had a median of .84 (M = .71). The statistically stable scores had a median of .82
(M = .80) and ranged from a low of .39 to a high of 1.0. One variable (Lambda) had
reliability in the poor classification range, 7 variables had reliability in the fair
range (SQo, Fr, Idio, Popular, DV1, Xu%, OBS), 29 variables had reliability in the

240 MEYER ET AL.

TABLE 3
95% CIs for Selected Benchmark Coefficients in the Composite Samplea

and in Small Samplesb

Composite Sample Small Samples

Observed
ICC Value

95% CI
Range

Lower
Boundary

Upper
Boundary

95% CI
Range

Lower
Boundary

Upper
Boundary

.99 .0054 .9869 .9923 .0213 .9748 .9960

.97 .0159 .9610 .9769 .0608 .9271 .9879

.95 .0262 .9353 .9615 .0992 .8806 .9798

.93 .0362 .9097 .9459 .1362 .8352 .9715

.91 .0461 .8842 .9303 .1721 .7910 .9631

.89 .0557 .8589 .9146 .2067 .7479 .9546

.85 .0743 .8087 .8830 .2724 .6650 .9374

.80 .0962 .7468 .8430 .3482 .5670 .9152

.75 .1168 .6858 .8026 .4171 .4752 .8923

.70 .1360 .6257 .7617 .4796 .3891 .8687

.65 .1538 .5665 .7203 .5359 .3084 .8442

.60 .1702 .5082 .6784 .5863 .2326 .8189

.50 .1989 .3944 .5932 .6710 .0945 .7655

.40 .2219 .2842 .5061 .7362 –.0282 .7080

.30 .2395 .1776 .4171 .7845 –.1384 .6461

.20 .2514 .0747 .3261 .8186 –.2392 .5794

.10 .2578 –.0246 .2332 .8410 –.3336 .5074

.00 .2587 –.1202 .1384 .8544 –.4245 .4299

Note. CI = confidence interval; ICC = intraclass correlation coefficient.
aN = 219. bN = 20.



good range (DQv/+, TF, Sum T, Fr + rF, Form%, SQu, FQfo, FQfu, H, (A), Ay,
Na, Hh, FAB2, PSV, GHR, Mp, EB Pervasive, AdjD, M–, XA%, WDA%, X + %,
X – %, S – %, F + %, EGO, PTI, SCZI), and the remaining 104 (76.42%) fell in the
excellent range. Overall, Table 1 reveals that the process of inserting randomly
generated error worked as expected by psychometric theory (Nunnally &
Bernstein, 1994). As the proportion of response-level random error increases,
summary score reliability decreases. Simultaneously, across samples, the sum-
mary score reliability coefficients remain quite high. These findings may seem
surprising. However, the data indicate that CS summary scores are generally quite
reliable despite forcing a considerable degree of random error into the responses.
Although this is reassuring, it is essential to recognize that random error is very
different from systematic error. This is an issue we return to later.

Impact of Sampling Variance on ICC Coefficients

Very often, researchers consider a sample of 20 Rorschach protocols to be suffi-
ciently large for determining CS scoring reliability (cf. Weiner, 1991; also see
Acklin, McDowell, Verschell, & Chan, 2000). Samples of this size may be quite
appropriate for indexes of absolute coder agreement (e.g., percentage agreement)
because these indexes are not dependent on between-subject variance. However,
for statistics like κ or the ICC, a sample of 20 protocols may possess some unusual
characteristics just by coincidence, and this can adversely affect chance-corrected
reliability statistics.

As noted previously, there were several indications that between-subjects vari-
ance was constrained for some of the scores in Sample 3, which contained only 19
Rorschach protocols. The upper portion of Table 4 presents the nine scores from
this sample with ICC values less than .70. The columns indicate the observed ICC
in this sample, the ICC in the full population of 219 protocols, the MSB and MSW
for the five raters in this sample, the average variance for each individual rater in
this sample, the average variance for each rater in the composite sample, and an F
ratio comparing the last two variances. Considering the last column of F ratios, it
can be seen that the variance in Sample 3 was significantly smaller than the corre-
sponding variance in the composite sample for six of the nine variables (and eight
of nine using a one-tailed significance test). Treating each of the variances as the
meta-analytic estimates they are (with aggregated df = 90 and 436), eight of the
nine variables have significantly less variance in Sample 3 than in the composite
sample. Thus, with the exception of DV1, there was generally restricted between-
subjects variance for the coefficients with ICC values < .70.7
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7The DV1 reliability coefficient was low largely because of one rater’s lapse on a single case. For
this case, four of the raters assigned between three and five DV1 scores, although the remaining rater
assigned just a single DV1 response. With this rater excluded, the ICC increased from .64 to .72.



The lower portion of Table 4 illustrates this further by comparing two target
scores with less than optimal reliability (SQu and FY) to relevant comparison vari-
ables. Data on SQu are presented along with statistics for two counterpart scores,
SQo and SQ–. Data on FY are presented along with information for other Form
Dominated Color and Shading determinants. In each case, it can be seen that the
between-subjects variance in Sample 3 was constrained for the target score rela-
tive to the between-subjects variance for the counterpart scores, even though scor-
ing error (i.e., MSW) was generally no worse for the target score than for the
counterpart scores. These analyses demonstrate how sampling error can influence
reliability. When 165 scores are examined in a relatively small sample, by chance
alone some of the 165 characteristics are likely to be artificially constrained. This
constraint will reduce interrater reliability coefficients.

Instability of Small Sample Reliability Estimates

The preceding raises broader questions about the accuracy of reliability estimates
derived from small samples. Even though a 95% CI should indicate the range in
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TABLE 4
Range Restriction As a Factor in the 19–Protocol Clinician Sample

Sample 3
ICC

Full
Population

ICC

Sample 3 M Variance
in Sample 3
per Rater

M Variance
in Population

per Rater

Sample to
Population F(18,

218) RatioVariable MSB MSW

Variables with ICC < .70 in the 19-protocol sample
FY .35 .90 1.44 .39 0.59 4.34 0.14***
DR2 .39 .85 1.56 .37 0.58 0.91 0.64
Level 2 SS .54 .87 4.56 .65 1.44 3.16 0.46*
DR1 .60 .82 6.13 .72 1.80 3.16 0.57
DV1 .64 .84 4.38 .44 1.23 1.02 1.21
SQu .65 .84 1.55 .15 0.43 0.96 0.45*
Id .66 .92 1.53 .14 0.42 2.52 0.17***
PTI .69 .88 3.06 .26 0.82 2.24 0.36**
AB .69 .93 1.03 .08 0.28 0.85 0.32**

SQu and FY considered alongside relevant comparison variables
SQo .99 .88 4.61 .01 0.93 1.08 0.86
SQu .65 .84 1.55 .15 0.43 0.96 0.45*
SQ– .89 .91 5.77 .14 1.27 2.14 0.59

FC .85 .83 11.23 .38 2.55 2.24 1.14
FC' .87 .86 10.40 .31 2.32 2.74 0.85
FY .35 .90 1.44 .39 0.59 4.34 0.14***
FT .74 .78 3.02 .19 0.75 0.94 0.80
FV .74 .72 2.21 .15 0.56 0.60 0.94

Note. ICC = intraclass correlation coefficient; MSB = mean square between (between-subjects variance);
MSW = mean square within (rating error variance).

*p < .05. **p < .01. ***p < .001.



which one should find the true population reliability coefficient 95% of the time, as
we noted earlier, nonnormal score distributions violate a critical assumption for
computing ICC CIs. Thus, it is likely that CIs will be misleading when they are
computed on CS scores with skewed and kurtotic distributions, particularly when
the reliability sample is small. To more thoroughly investigate this issue, we con-
ducted a series of ancillary analyses. Specifically, we considered the composite
sample of 219 protocols to be the full population of interest. Consequently, the ICC
values reported in Table 2 are considered population parameters that indicate the
true reliability in the population (although with an N of 219, the data in Table 2 are
themselves sample estimates of underlying population parameters). We then drew
100 random samples of 20 protocols each from this population. For each of the 20-
protocol samples, we computed ICCs and the 95% CI around the observed values.
This was done for all the scores listed in Table 2. Theoretically, the true population
reliability coefficient (i.e., the values in Table 2) should fall within the computed CI
95 times out of 100. In other words, in 95 of the 100 random draws, the value re-
ported in Table 2 should fall within the CI computed from the 20-protocol samples.
To the extent that this does not happen, it indicates that problems exist when trying
to estimate chance-corrected reliability coefficients from small samples.

Table 5 reports summary data from our analyses. The first column indicates the
164 scores under consideration (because no Pure Form responses were also as-
signed a FQ+ score, the score FQf+ was dropped from these analyses). The second
column reports the mean base rate in the full population rounded to three decimal
places (SQ+ and V had base rates of .0003 and .0002, respectively). Base rates are
not reported for those variables in which it does not provide a meaningful index
(i.e., weighted scores and percentage scores). The third column indicates the reli-
ability coefficient observed in the population. The fourth and fifth columns report
the mean and minimum reliability coefficients observed across the 100 randomly
selected 20-protocol samples from the population (excluding those samples in
which the reliability coefficient could not be computed because of a lack of vari-
ance). We do not report maximum values because the vast majority were 1.0 (for
107 scores) and the lowest was .96.

The sixth and seventh columns of Table 5 indicate the difference between the
reliability observed in the full population and that observed in the 100 randomly
selected 20-protocol samples. Two differences are reported. The sixth column re-
ports the raw difference between the population ICC and the mean ICC across all
100 samples. The seventh column reports the difference after the ICC coefficients
have been transformed using Fisher’s Z, which is designed to correct for the skew
inherent in the distribution of correlational values.

The eighth and ninth columns of Table 5 report the percentage of times when
the ICC coefficient in the population fell outside the 95% CIs derived from the one



TABLE 5
The Impact of Sampling Error on 164 Observed ICC Values: Interrater Reliability in the Composite Sample of 219 Protocols Relative to100

Random Draws of 20 Protocols Each

Population Sample ICC

Population Minus
Sample

Difference
% When

Population ICC Is % When Sample ICC Is

Score M BR ICC M Minimum ICC Z ICC < SLL > SUL < .40 < .60 < Population – .10

Zf 0.579 0.98 0.98 0.92 .01 0.00 .12 0.09 .00 .00 .00
ZSum — 0.98 0.97 0.90 .01 –0.01 .14 0.09 .00 .00 .00
W 0.420 0.99 0.99 0.97 .00 –0.05 .15 0.18 .00 .00 .00
Sum Wv 0.025 0.92 0.83 0.44 .10 0.28 .12 0.40 .00 .04 .45
D 0.444 0.99 0.99 0.96 .00 –0.08 .21 0.14 .00 .00 .00
Dd 0.136 0.98 0.97 0.84 .01 –0.10 .27 0.16 .00 .00 .01
S 0.130 0.94 0.93 0.70 .01 –0.07 .18 0.13 .00 .00 .09
DQ+ 0.292 0.98 0.97 0.79 .01 –0.06 .25 0.16 .00 .00 .07
DQo 0.658 0.99 0.99 0.94 .00 0.02 .11 0.15 .00 .00 .00
DQv/+ 0.009 0.81 0.77 –0.06 .04 0.09 .10 0.16 .07 .15 .29
DQv 0.041 0.91 0.85 0.46 .06 0.11 .13 0.27 .00 .05 .33
DQ+ & FQ– 0.075 0.96 0.93 0.36 .03 0.08 .15 0.17 .01 .01 .06
DQo & FQ– 0.173 0.96 0.94 0.80 .01 –0.01 .11 0.13 .00 .00 .04
DQ/ & FQ– 0.003 0.87 0.77 0.00 .09 0.47 .00 0.52 .12 .16 .29
DQv & FQ– 0.008 0.75 0.53 –0.12 .22 0.24 .14 0.42 .30 .53 .58
FQx+ 0.005 0.91 0.68 –0.03 .23 0.61 .15 0.60 .23 .28 .45
FQxo 0.486 0.98 0.97 0.91 .01 0.00 .07 0.08 .00 .00 .00
FQxu 0.232 0.93 0.91 0.71 .02 0.01 .10 0.13 .00 .00 .11
FQx– 0.259 0.96 0.95 0.82 .01 –0.01 .13 0.17 .00 .00 .05
FQxNone 0.017 0.93 0.83 0.00 .10 0.39 .05 0.51 .03 .11 .39
FQfo 0.180 0.96 0.96 0.87 .00 –0.08 .16 0.04 .00 .00 .00
FQfu 0.088 0.91 0.88 0.47 .03 –0.01 .12 0.12 .00 .02 .15



245

FQf– 0.096 0.92 0.90 0.49 .03 0.01 .11 0.11 .00 .02 .12
MQ+ 0.004 0.90 0.63 –0.06 .28 0.68 .23 0.63 .30 .33 .48
MQo 0.103 0.94 0.92 0.74 .02 0.03 .12 0.12 .00 .00 .11
MQu 0.037 0.82 0.80 0.38 .02 –0.02 .10 0.08 .01 .08 .20
MQ– 0.049 0.92 0.90 0.67 .01 –0.02 .09 0.08 .00 .00 .08
MQNone 0.001 0.66 0.45 0.00 .21 0.80 .00 1.00 .55 .55 .55
SQ+ 0.000 0.66 0.35 0.00 .32 0.70 .00 0.87 .62 .62 .62
SQo 0.040 0.88 0.85 0.45 .03 0.00 .13 0.08 .00 .03 .19
SQu 0.030 0.84 0.80 0.33 .04 0.03 .10 0.13 .01 .11 .28
SQ– 0.057 0.91 0.90 0.56 .01 –0.09 .19 0.09 .00 .01 .14
SQnone 0.002 0.82 0.64 –0.03 .18 0.78 .00 0.58 .27 .30 .47
WDFQ+ 0.005 0.91 0.68 –0.03 .23 0.61 .15 0.60 .23 .28 .45
WDFQo 0.459 0.97 0.97 0.88 .01 0.00 .06 0.09 .00 .00 .00
WDFQu 0.185 0.93 0.91 0.77 .02 0.00 .14 0.09 .00 .00 .09
WDFQ– 0.198 0.97 0.96 0.79 .01 0.03 .10 0.16 .00 .00 .03
WDFQNone 0.016 0.93 0.83 0.00 .10 0.37 .07 0.49 .03 .12 .40
Blends 0.228 0.93 0.92 0.67 .01 –0.04 .12 0.08 .00 .00 .08
C – Sh Blend 0.042 0.87 0.86 0.37 .02 –0.05 .17 0.08 .01 .02 .16
M 0.192 0.96 0.95 0.82 .01 0.00 .10 0.09 .00 .00 .03
FM 0.149 0.95 0.94 0.83 .01 –0.03 .13 0.03 .00 .00 .02
m 0.079 0.92 0.90 0.66 .02 –0.02 .14 0.08 .00 .00 .10
FC 0.075 0.83 0.79 0.47 .04 0.03 .06 0.11 .00 .08 .25
CF 0.075 0.84 0.80 0.43 .03 0.00 .13 0.10 .00 .06 .26
C 0.027 0.92 0.87 0.16 .05 0.13 .14 0.22 .03 .06 .21
Cn 0.001 0.97 0.43 0.00 .54 1.92 .00 0.92 .57 .57 .57
FC' 0.080 0.86 0.83 0.52 .03 –0.01 .12 0.10 .00 .03 .24
C'F 0.017 0.62 0.59 –0.03 .02 –0.05 .17 0.10 .23 .47 .34
C' 0.004 0.71 0.56 –0.05 .15 0.33 .05 0.41 .32 .40 .40
FT 0.032 0.78 0.75 0.34 .03 –0.04 .16 0.13 .03 .17 .30
TF 0.006 0.54 0.52 –0.12 .02 0.05 .09 0.15 .34 .55 .35
T 0.001 0.97 0.76 0.00 .21 1.94 .00 1.00 .21 .21 .29

(continued)



246 TABLE 5 (Continued)

Population Sample ICC

Population Minus
Sample

Difference
% When

Population ICC Is % When Sample ICC Is

Score M BR ICC M Minimum ICC Z ICC < SLL > SUL < .40 < .60 < Population – .10

FV 0.016 0.72 0.65 0.10 .08 0.05 .13 0.20 .20 .41 .41
VF 0.005 0.81 0.77 –0.03 .04 0.09 .13 0.14 .10 .11 .22
V 0.000 1.00 1.00 1.00 .00 — — — .00 .00 .00
FY 0.072 0.90 0.86 0.51 .04 0.04 .11 0.16 .00 .02 .22
YF 0.018 0.82 0.74 0.12 .08 0.07 .14 0.25 .10 .22 .35
Y 0.005 0.79 0.64 –0.06 .16 0.44 .06 0.48 .26 .34 .48
Fr 0.019 0.98 0.98 0.79 –.01 0.30 .00 0.22 .00 .00 .05
rF 0.003 0.85 0.54 –0.06 .31 0.61 .12 0.68 .39 .40 .52
FD 0.048 0.88 0.86 0.52 .02 –0.05 .17 0.09 .00 .02 .18
F 0.368 0.97 0.97 0.89 .00 –0.10 .22 0.06 .00 .00 .00
Pairs 0.363 0.97 0.97 0.86 .00 –0.15 .31 0.15 .00 .00 .02
H 0.123 0.98 0.97 0.84 .00 –0.08 .20 0.06 .00 .00 .01
(H) 0.075 0.93 0.91 0.66 .02 –0.01 .17 0.14 .00 .00 .14
Hd 0.082 0.92 0.91 0.40 .01 –0.23 .33 0.12 .01 .03 .13
(Hd) 0.022 0.88 0.82 –0.06 .06 0.04 .16 0.25 .04 .10 .30
Hx 0.014 0.96 0.81 –0.06 .15 0.59 .09 0.49 .10 .12 .38
A 0.363 0.99 0.98 0.82 .00 –0.08 .22 0.15 .00 .00 .01
(A) 0.033 0.94 0.89 0.14 .05 0.08 .18 0.27 .01 .04 .23
Ad 0.093 0.95 0.95 0.77 .00 –0.21 .28 0.10 .00 .00 .07
(Ad) 0.005 0.72 0.64 –0.06 .08 0.20 .04 0.20 .16 .30 .30
An 0.059 0.92 0.91 0.24 .01 –0.28 .45 0.13 .02 .04 .13
Art 0.031 0.91 0.86 0.44 .06 0.10 .18 0.28 .00 .08 .28
Ay 0.025 0.84 0.81 –0.03 .03 0.00 .18 0.17 .03 .12 .23
Bl 0.027 0.98 0.98 0.79 .01 0.53 .00 0.60 .00 .00 .03
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Bt 0.050 0.96 0.96 0.87 .00 0.03 .05 0.04 .00 .00 .00
Cg 0.081 0.95 0.94 0.78 .01 –0.03 .13 0.06 .00 .00 .01
Cl 0.011 0.87 0.84 0.00 .03 0.17 .05 0.26 .04 .09 .19
Ex 0.005 0.86 0.84 –0.03 .01 0.35 .00 0.37 .05 .07 .19
Food 0.016 0.94 0.91 0.34 .03 0.22 .03 0.26 .01 .03 .13
Fi 0.024 0.93 0.93 0.51 .00 0.03 .03 0.15 .00 .01 .09
Geog 0.007 0.94 0.92 0.00 .02 0.67 .00 0.68 .02 .03 .20
Hh 0.036 0.85 0.83 0.33 .02 –0.08 .22 0.14 .04 .13 .17
Ls 0.041 0.94 0.91 0.63 .03 0.08 .12 0.15 .00 .00 .13
Na 0.029 0.94 0.92 0.45 .03 –0.01 .18 0.16 .00 .03 .13
Sc 0.035 0.93 0.91 0.68 .02 –0.04 .19 0.15 .00 .00 .14
Sx 0.042 0.96 0.94 0.63 .03 0.10 .10 0.22 .00 .00 .08
Xy 0.006 0.95 0.89 0.00 .05 0.82 .00 0.77 .05 .05 .24
Idio 0.053 0.92 0.86 0.45 .06 0.12 .09 0.25 .00 .03 .28
DV1 0.022 0.84 0.72 –0.05 .12 0.14 .13 0.29 .12 .27 .44
INC1 0.032 0.74 0.72 0.27 .02 –0.09 .19 0.11 .10 .19 .26
DR1 0.064 0.82 0.79 0.26 .03 0.00 .10 0.10 .01 .10 .24
FAB1 0.037 0.90 0.83 0.52 .08 0.14 .18 0.36 .00 .02 .41
ALOG 0.017 0.69 0.70 –0.15 –.02 –0.17 .27 0.12 .13 .26 .25
CONTAM 0.004 0.76 0.63 –0.09 .13 0.31 .08 0.39 .25 .29 .48
DV2 0.005 0.80 0.59 –0.07 .22 0.35 .15 0.50 .33 .41 .48
INC2 0.010 0.82 0.76 0.00 .05 0.12 .13 0.25 .11 .20 .27
DR2 0.022 0.85 0.79 –0.03 .06 0.01 .16 0.17 .04 .11 .28
FAB2 0.016 0.81 0.75 0.12 .06 0.04 .14 0.18 .08 .19 .33
Sum6 0.231 0.91 0.90 0.55 .00 –0.08 .15 0.09 .00 .01 .09
WSum6 — 0.90 0.89 0.63 .01 –0.05 .10 0.07 .00 .00 .11
AB 0.018 0.93 0.87 0.34 .06 0.24 .13 0.40 .01 .05 .33
AG 0.039 0.90 0.86 0.41 .03 0.03 .13 0.10 .00 .02 .19
CFB 0.001 0.96 0.81 0.00 .15 1.94 .00 1.00 .19 .19 .19
COP 0.039 0.86 0.83 0.28 .03 –0.06 .22 0.16 .02 .08 .25
CP 0.001 0.79 0.60 –0.03 .20 0.89 .00 0.76 .36 .36 .45

(continued)
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TABLE 5 (Continued)

Population Sample ICC

Population Minus
Sample

Difference
% When

Population ICC Is % When Sample ICC Is

Score M BR ICC M Minimum ICC Z ICC < SLL > SUL < .40 < .60 < Population – .10

GHR 0.141 0.89 0.88 0.76 .01 0.01 .04 0.00 .00 .00 .05
PHR 0.193 0.94 0.93 0.56 .01 –0.08 .26 0.09 .00 .01 .07
MOR 0.084 0.89 0.87 0.34 .02 –0.01 .08 0.10 .01 .02 .12
PER 0.059 0.94 0.92 0.72 .02 –0.03 .19 0.13 .00 .00 .11
PSV 0.011 0.84 0.80 –0.03 .04 0.08 .08 0.14 .04 .09 .24
R 1.000 1.00 1.00 0.98 .00 0.02 .20 0.26 .00 .00 .00
Lambda — 0.98 0.94 0.54 .04 0.19 .17 0.50 .00 .01 .15
Form % — 0.95 0.95 0.73 .00 –0.09 .12 0.05 .00 .00 .02
FM + m 0.229 0.95 0.94 0.77 .01 –0.04 .16 0.06 .00 .00 .03
WSumC — 0.94 0.93 0.64 .01 –0.12 .21 0.12 .00 .00 .07
Sum Shading 0.257 0.94 0.93 0.76 .00 –0.05 .07 0.05 .00 .00 .05
EA 0.345 0.96 0.95 0.80 .00 –0.06 .14 0.03 .00 .00 .02
es 0.485 0.95 0.95 0.83 .00 –0.05 .06 0.06 .00 .00 .04
Adj es 0.377 0.94 0.93 0.81 .01 –0.02 .06 0.04 .00 .00 .01
EBPer — 0.92 0.91 0.72 .01 –0.05 .11 0.04 .00 .00 .05
D Score — 0.89 0.88 0.61 .02 –0.01 .08 0.07 .00 .00 .10
AdjD — 0.87 0.85 0.64 .02 0.01 .05 0.02 .00 .00 .16
Sum C' 0.101 0.90 0.89 0.73 .01 –0.03 .08 0.05 .00 .00 .09
Sum V 0.021 0.81 0.78 0.27 .03 –0.05 .23 0.15 .03 .17 .30
Sum T 0.039 0.89 0.86 0.55 .03 –0.02 .18 0.18 .00 .02 .27
Sum Y 0.096 0.91 0.87 0.49 .04 0.04 .07 0.15 .00 .03 .20
CF + C + Cn 0.103 0.89 0.87 0.48 .02 –0.03 .13 0.08 .00 .01 .17
Afr — 0.99 1.00 0.94 .00 0.06 .21 0.31 .00 .00 .00
Blends/R — 0.93 0.92 0.73 .01 –0.02 .07 0.04 .00 .00 .04
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Active 0.276 0.96 0.95 0.84 .01 –0.05 .18 0.09 .00 .00 .02
Passive 0.147 0.92 0.90 0.75 .02 0.03 .09 0.10 .00 .00 .11
All H Cont 0.302 0.98 0.97 0.73 .01 –0.18 .31 0.12 .00 .00 .03
(H) + (Hd) 0.097 0.95 0.94 0.79 .01 –0.01 .15 0.16 .00 .00 .05
(A) + (Ad) 0.038 0.92 0.88 0.16 .05 0.05 .19 0.22 .02 .02 .21
H(H)A(A) 0.595 0.99 0.99 0.92 .00 –0.07 .16 0.11 .00 .00 .00
Hd(Hd)Ad(Ad) 0.201 0.95 0.94 0.72 .01 –0.09 .25 0.12 .00 .00 .09
Isol Index — 0.96 0.95 0.79 .00 –0.16 .23 0.12 .00 .00 .04
Ma 0.126 0.96 0.95 0.80 .01 –0.05 .15 0.15 .00 .00 .01
Mp 0.069 0.91 0.88 0.65 .03 0.03 .10 0.10 .00 .00 .14
Intel Index — 0.93 0.90 0.55 .03 0.03 .17 0.23 .00 .01 .20
Sum6 Lvl 2 0.054 0.87 0.84 0.46 .04 0.03 .10 0.08 .00 .04 .16
XA% — 0.92 0.91 0.76 .01 –0.06 .17 0.05 .00 .00 .07
WDA% — 0.94 0.94 0.77 .01 –0.03 .13 0.09 .00 .00 .07
X – % — 0.93 0.92 0.77 .01 –0.04 .14 0.06 .00 .00 .06
S – % — 0.75 0.75 0.18 .00 –0.22 .28 0.13 .08 .24 .26
Popular 0.212 0.93 0.93 0.81 .01 –0.03 .12 0.04 .00 .00 .04
X + % — 0.96 0.96 0.85 .01 –0.04 .08 0.07 .00 .00 .02
F + % — 0.93 0.92 0.71 .01 –0.09 .18 0.05 .00 .00 .05
Xu% — 0.83 0.81 0.46 .02 –0.03 .15 0.09 .00 .09 .21
Zd — 0.93 0.92 0.77 .01 –0.05 .09 0.07 .00 .00 .07
Egocent Ind — 0.96 0.95 0.76 .01 –0.05 .15 0.07 .00 .00 .01
Fr + rF 0.023 0.98 0.98 0.86 .00 0.26 .00 0.23 .00 .00 .01
An + Xy 0.065 0.92 0.92 0.24 .00 –0.33 .43 0.15 .01 .04 .14
NonPureH 0.179 0.96 0.94 0.69 .01 –0.10 .27 0.15 .00 .00 .10
PTI 0.074 0.88 0.87 0.64 .01 –0.05 .13 0.06 .00 .00 .12
SCZI 0.115 0.87 0.87 0.61 .00 –0.07 .12 0.05 .00 .00 .13
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TABLE 5 (Continued)

Population Sample ICC

Population Minus
Sample

Difference
% When

Population ICC Is % When Sample ICC Is

Score M BR ICC M Minimum ICC Z ICC < SLL > SUL < .40 < .60 < Population – .10

HVI 0.133 0.91 0.90 0.74 .01 –0.05 .11 0.05 .00 .00 .08
OBS 0.053 0.91 0.89 0.33 .02 0.00 .13 0.13 .01 .01 .15

M .11 .90 0.86 0.48 .04 .10 .13 .21 .05 .08 .17
Minimum .00 .54 0.35 –0.15 –.02 –.33 .00 .00 .00 .00 .00
Maximum 1.00 1.00 1.00 1.00 .54 1.94 .45 1.00 .62 .62 .62
SD .16 .08 .12 .34 .07 .33 .08 .21 .11 .14 .15
Kurtosis 8.65 3.39 2.92 –1.22 15.01 15.68 2.08 4.20 9.20 4.19 .10
Skewness 2.57 –1.64 –1.66 –.40 3.39 3.53 .83 2.10 2.94 2.16 .91

Note. Raw differences of .05 or greater between the population ICC and the mean sample ICCs in Column 6 are in bold. In the last column, an underlined value
indicates instances in which the small samples underestimated the population coefficient by a magnitude of .10 or more at least 10% of the time. ICC = intraclass
correlation coefficient; BR = mean base rate in the full population; SLL = sample lower limit; SUL = sample upper limit.



ports the percentage of times when the population ICC fell below the lower limit of
the 95% CI from the samples, whereas the ninth column reports the percentage of
times it fell above the upper limit. In theory, if the CIs are accurate, the population
ICC should fall below the lower limit 2.5% of the time and above the upper limit
2.5% of the time, so the values in each column should be .025.

Finally, the last three columns in Table 5 indicate the percentage of times in
which the one hundred 20-protocol samples deviated from fixed benchmarks. Spe-
cifically, the tenth column indicates the percent of times that the 20-protocol sam-
ples indicated reliability was poor (i.e., ICC < .40). The eleventh column indicates
the percent of times when the randomly drawn samples indicated reliability was
not good (i.e., ICC < .60). The final column indicates the proportion of samples
that found ICC values that were lower than the population ICC value by more than
.10 (e.g., when a sample indicated reliability was < .75 when in fact the population
ICC was .85).

To illustrate, consider the fourth row examining the sum of Wv responses. This
score had a base rate in the population of .025, indicating that it occurred 2.5 times
out of every 100 responses. It had an ICC of .92 in the full population. Across the 100
random samples of 20 protocols, the mean ICC was .83 and the minimum was .44
(the unreported maximum was .99). The average small sample ICC was lower than
the population parameter by a raw value of .10 (i.e., .921 – .8255 = .955) and by a
magnitude of .28 after transforming the ICC values by Fisher’s Z. With respect to the



tion is higher than the upper limit of the sample’s CI about half the time (i.e., 48%).
The true reliability is lower than the lower limit of the sample’s CI an average of just
10% of the time. Thus, small samples often produce misleading reliability results.
When this occurs, the small sample results underestimate the true reliability about
five times more often than they overestimate it.

More important, the scores that are most likely to be underestimated by small
samples can be predicted with a substantial degree of accuracy. In particular, as
scores becomes less frequent in the population, small samples are more likely to
provide underestimates of their true reliability. Figures 1 and 2 plot this relation.
Figure 1 shows the association between score base rates in the population (hori-
zontal axis; using a logarithmic scale) and the raw difference between the popula-
tion ICC and the mean ICC observed across the 100 random samples (vertical
axis). In other words, the figure plots the data from columns 2 and 6 in Table 5. It
can be seen that there is a negative curvilinear relationship (R = .80) such that the
true reliability of a score is more drastically underestimated for increasingly rare
scores. Small samples provide adequate estimates of scores that occur at least 5
times in 100 responses (i.e., base rate > .05). For scores that occur less often, and
particularly those that occur less than 1 time in 100 responses (which corresponds
to about 15% of the scores in our analyses), small samples are increasingly likely
to underestimate reliability and the underestimates are increasingly severe.
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FIGURE 1 The association between score base rates in the population and the raw difference
between the population intraclass correlation coefficient (ICC) and the mean ICC observed
across the 100 random samples of 20 protocols.



Figure 2 plots a similar relation. The vertical axis now quantifies the extent to
which the population ICC exceeds the upper limit of the 95% CI in the smaller
samples (i.e., column 9 in Table 5). There is again a strong negative nonlinear rela-
tionship with base rates in the population (R = .87). Once again, the small samples
provide more reasonable CIs for scores that occur at least 5 times in 100 responses
(although even at this frequency, the true ICC values fall above the confidence
range much more often than the expected rate of .025). In general, for scores that
occur less than 1 time in 100 responses, true reliability falls above the upper limit
of the sample’s 95% CI between 30% and 100% of the time.

Returning to Table 5, note that there are two instances in which the mean ICC
across samples is slightly higher than the population ICC (see column 6; Fr =
–.0052; ALOG = –.0151). For both scores, the disparity occurred because the rater
pair for a s



A careful review of Table 5 also reveals numerous instances in which the raw
difference between the population ICC and the average sample ICC (i.e., column
6) has a positive value, whereas the Fisher’s Z transformed difference (column 7)
has a negative value. In these instances, the Fisher’s Z coefficients are artifactual.
The positive raw difference truly indicates that the population ICC is larger than
the mean ICC obtained across the 100 small samples. The transformed Fisher’s Z
coefficients suggest just the opposite (i.e., that the average small sample ICC is
larger than the population ICC) because the Fisher’s Z transformation is imprecise.
Particularly when a raw coefficient is large, the transformation creates an upward
bias that artificially inflates the Z transformed coefficient (see Hunter & Schmidt,
1990). Across the 100 small samples, there are many opportunities for this bias to
emerge, which in turn creates the seemingly contradictory data in those two col-
umns in Table 5.

Overall, the data in Table 5 indicate that chance factors related to sampling er-
ror affect observed ICC values in relatively small samples (for additional compel-
ling data, see Carroll & Faden, 1978). Sampling error can occur through at least
two relatively independent processes. First, chance affects the specific proto-
col–coder pairs selected for analysis. To the extent protocols are relatively easy or
hard to score, or to the extent coder skills are aligned across pairings, the observed
disagreement among coders (i.e., MSW) will either be too large or too small rela-
tive to the population parameter. If the MSW is biased by being too large, it will
generate lower ICC values; if it is too small, it will generate larger than expected
ICC values. The second way chance will affect ICC values is through between-
subjects variance. Relative to the population at large, if patients in a sample differ
more than average on certain characteristics, ICC values for corresponding Ror-
schach variables will be larger than expected because the MSB will be larger than
average. Conversely, to the extent patients in a sample happen to be quite similar
on certain characteristics, ICC values for those characteristics will be smaller than
expected. The latter processes affect rare scores more often than common scores.

Response-Level Reliability Versus Patient-Level Reliability

In the next set of analyses, we tested whether the reliability of scores assigned to
each response present a more stringent standard than the reliability of summary
scores evaluated across patients. This was accomplished by comparing response-
level κ coefficients to their corresponding summary score ICC values. For this
analysis, we limited the variables to those that were assigned at least one time by
each rater across samples. We also only examined those scores for which a dichoto-
mous scoring decision (i.e., present vs. absent) could be made at the response level
and then compared to an equivalent score at the protocol level. The variable R was
excluded because there are problems evaluating this score at the response level.
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Specifically, even though it is easy to determine when both raters agree a response
is present or when one rater believes a response is present and the other does not, it
is impossible to count the number of times both raters agree a response is absent.
Consequently, it is impossible to compute a meaningful kappa coefficient for R at
the response level of analysis. In total, we evaluated 108 scores.

Because κ and the ICC are equivalent chance-corrected statistics for dichoto-
mously assigned scores in increasingly large samples,8 and because all 108 scores
can be considered dichotomous assignments to each response (i.e., present vs. ab-



score reliability increased from .06 to .14, whereas the proportion of scores that
had noticeably lower response-level reliability increased dramatically from 16%
to 67%. Thus, the pattern supports psychometric theory. Like self-report scales
that sum across items, random CS coding errors tend to cancel out when the scores
are aggregated across individual responses, resulting in summary scales that are
more reliable than the scores assigned to individual responses. Furthermore, the
impact of aggregation is more pronounced in instances when the response-level
scoring is less accurate. This suggests that although skilled raters benefit to some
extent from summarizing scores across responses, it is relatively less proficient
raters who benefit the most.

Table 7 presents results for specific scores to illustrate the difference between
response-level and protocol-level reliability. Data are presented from the four
samples that provide optimal contrasts, including the student coders versus the ex-
perienced raters and the sample containing 30% random error versus the sample
containing 10% random error. Reviewing the student rater sample, it can be seen
that aggregation across responses often leads to dramatic gains in reliability for
those scores the raters found difficult to code on a response-by-response basis
(e.g., FQxu, INC1, DR1). Considering the cognitive Special Scores (i.e., DV1 to
FAB2), with the exception of DR2, the response-by-response coding would be
classified as poor or fair although the summary score coding would be considered
good or excellent. Thus, even though these coders could not synonymously clas-
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TABLE 6
The Superior Reliability of Comprehensive System Summary Scores: A Summary of

Response-Level Reliability Coefficients (κ) Versus Total Score Reliability Coefficients (ICC)
for 108 Variables Across Samples

Raw
Difference % of Raw

Difference
≥ .10

Fisher’s Z
Difference

Sample M κ M ICC M Mdn M Mdn

Clinical samples
1. Student .69 .78 .09 .06 36 .23 .21
2. Experienced .91 .93 .02 .02 01 .27 .27
4. Applied .89 .92 .03 .03 03 .37 .30
5. Composite .84 .89 .05 .04 10 .29 .26
Forced random error samples
6. 10% error .88 .94 .06 .06 16 .42 .38
7. 20% error .77 .88 .11 .11 57 .39 .39
8. 30% error .66 .80 .14 .14 67 .36 .34

Note. Kappa (κ) was calculated across responses (N = 1,407; 1,299; 1,667; 4,761; 1,378; 1,378; and
1,378, respectively for each sample). ICC was calculated across protocols (N = 66, 65, 69, 219, 57, 57,
and 57, respectively). ICC = intraclass correlation coefficient; raw difference = ICC – κ; Z difference =
Fisher’s ZICC – Fisher’s Zκ.



TABLE 7
Illustrating the Difference Between Response Level Reliability (κ) and Summary Score Reliability (ICC) With Specific Results

From Four of the Samples

Student Experienced 30% Error 10% Error

κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference

W .95 0.99 0.04 1.00 1.00 .00 0.45 0.76 .31 0.81 0.96 .15
Wv .72 0.72 0.00 0.90 0.94 .04 0.68 0.79 .12 0.87 0.92 .05
D .88 0.97 0.09 0.99 1.00 .01 0.51 0.90 .39 0.83 0.98 .15
Dd .85 0.96 0.11 0.99 1.00 .01 0.63 0.86 .23 0.90 0.97 .07
S .83 0.87 0.04 0.95 0.97 .02 0.66 0.78 .12 0.89 0.97 .08
DQ+ .86 0.92 0.06 0.95 0.98 .02 0.45 0.81 .36 0.81 0.97 .15
DQo .83 0.98 0.15 0.93 0.99 .07 0.39 0.84 .46 0.79 0.97 .18
DQv/+ .75 0.79 0.04 0.77 0.75 –.02 0.65 0.74 .09 0.94 0.96 .02
DQv .75 0.78 0.03 0.84 0.91 .07 0.69 0.84 .15 0.86 0.95 .08
DQ+ & FQ– .66 0.86 0.20 0.91 0.96 .05 0.59 0.80 .21 0.80 0.93 .13
DQo & FQ– .73 0.91 0.18 0.91 0.96 .05 0.67 0.87 .20 0.91 0.98 .06
DQv & FQ– .21 0.47 0.26 0.65 0.64 .00 0.56 0.69 .13 0.70 0.84 .14
FQxo .84 0.94 0.11 0.98 0.99 .01 0.51 0.84 .33 0.84 0.94 .10
FQxu .59 0.82 0.24 0.92 0.95 .03 0.57 0.90 .33 0.87 0.98 .11
FQx– .72 0.88 0.17 0.96 0.98 .02 0.56 0.91 .35 0.83 0.97 .13
FQxNone .62 0.78 0.16 1.00 1.00 .00 0.69 0.86 .17 0.88 0.94 .07
FQfo .85 0.95 0.10 0.97 0.98 .01 0.65 0.72 .07 0.88 0.93 .05
FQfu .62 0.85 0.23 0.92 0.95 .03 0.64 0.68 .04 0.91 0.93 .02
FQf– .67 0.86 0.18 0.92 0.97 .05 0.64 0.84 .20 0.87 0.95 .07
MQo .87 0.80 –0.07 0.97 0.99 .02 0.68 0.76 .08 0.91 0.94 .03
MQu .66 0.72 0.06 0.87 0.81 –.07 0.65 0.77 .12 0.90 0.95 .05
MQ– .71 0.87 0.16 0.96 0.98 .02 0.64 0.73 .09 0.84 0.91 .07
SQo .76 0.79 0.03 0.93 0.93 .00 0.66 0.57 –.09 0.89 0.91 .02

(continued)
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258 TABLE 7 (Continued)

Student Experienced 30% Error 10% Error

κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference

SQu .61 0.67 0.06 0.83 0.86 .03 0.67 0.67 .00 0.92 0.96 .04
SQ– .69 0.79 0.10 0.94 0.96 .01 0.74 0.80 .05 0.90 0.95 .05
WDFQo .84 0.92 0.09 0.98 0.99 .01 0.54 0.84 .29 0.85 0.94 .09
WDFQu .61 0.72 0.11 0.94 0.96 .03 0.61 0.91 .31 0.88 0.98 .10
WDFQ– .70 0.89 0.19 0.96 0.98 .02 0.57 0.85 .28 0.82 0.94 .12
WDFQNone .63 0.76 0.13 1.00 1.00 .00 0.70 0.85 .15 0.89 0.94 .06
Ma .89 0.93 0.04 0.96 0.96 .00 0.67 0.80 .14 0.90 0.96 .07
Mp .69 0.75 0.06 0.97 0.99 .02 0.62 0.70 .08 0.87 0.91 .03
M .90 0.93 0.03 0.98 0.98 .01 0.61 0.82 .21 0.87 0.96 .09
FM .92 0.95 0.03 0.94 0.94 –.01 0.66 0.83 .17 0.89 0.95 .07
m .80 0.83 0.03 0.90 0.92 .02 0.65 0.82 .17 0.89 0.96 .07
FC .59 0.53 –0.06 0.88 0.93 .05 0.69 0.82 .13 0.91 0.96 .05
CF .62 0.64 0.02 0.87 0.92 .04 0.71 0.94 .23 0.89 0.97 .08
C .58 0.64 0.06 0.97 0.98 .01 0.69 0.84 .15 0.84 0.92 .08
CF + C + Cn .74 0.77 0.02 0.92 0.97 .05 0.70 0.95 .24 0.88 0.97 .09
Sum C .89 0.91 0.02 0.97 0.99 .02 0.67 0.93 .26 0.88 0.97 .09
FC' .67 0.79 0.12 0.92 0.95 .03 0.65 0.82 .17 0.86 0.92 .06
C'F .39 0.34 –0.05 0.83 0.88 .06 0.79 0.89 .10 0.96 0.98 .02
C' .16 0.20 0.04 1.00 1.00 .00 0.78 0.74 –.04 0.78 0.74 –.04
Sum C' .76 0.88 0.12 0.92 0.94 .01 0.69 0.86 .17 0.88 0.96 .08
FT .61 0.51 –0.10 0.86 0.90 .04 0.58 0.76 .18 0.90 0.94 .04
TF .45 0.51 0.06 0.67 0.52 –.14 0.70 0.63 –.07 0.75 0.68 –.06
Sum T .76 0.85 0.09 0.84 0.89 .04 0.61 0.70 .08 0.85 0.88 .03
FV .44 0.52 0.08 0.89 0.91 .02 0.74 0.89 .1]TJ
T*
[(m)-7376.4(.80)-2326.9(0.83)518(.02)-3399(0.74)-6.43 0.75 0.62 0.08 0.52 –.14 0.70 0.6(0.90)-2209.1(0.96)-3857.
[(TF] 92326.9(0.83)518(.02)
[(FM)-6709.4FC9(0.83)518(..3(0.12)-3058676)-3922(.18)-336C)-3399(0.61)4
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FY .51 0.78 0.27 0.93 0.97 .05 0.65 0.83 .19 0.88 0.95 .07
YF .46 0.60 0.14 0.91 0.93 .02 0.74 0.85 .11 0.89 0.93 .05
Y .60 0.47 –0.13 0.89 0.92 .03 0.86 0.88 .03 1.00 1.00 .00
Sum Y .61 0.79 0.17 0.92 0.97 .05 0.68 0.89 .22 0.88 0.96 .08
Fr .88 0.94 0.06 0.96 0.98 .02 0.63 0.53 –.10 0.90 0.91 .01
rF .00 0.49 0.49 0.87 0.94 .07 0.56 0.75 .20 0.78 0.88 .10
Fr + rF .94 0.96 0.03 0.97 0.99 .02 0.60 0.71 .11 0.86 0.93 .07
FD .71 0.76 0.04 0.90 0.93 .03 0.77 0.85 .09 0.90 0.95 .05
F .87 0.97 0.10 0.96 0.99 .03 0.51 0.77 .26 0.85 0.95 .11
Blends .79 0.89 0.10 0.91 0.98 .07 0.64 0.92 .28 0.87 0.97 .11
C – Shd Blend .74 0.83 0.10 0.92 0.94 .02 0.76 0.89 .13 0.89 0.96 .06
Pairs .83 0.94 0.10 0.98 1.00 .01 0.52 0.80 .27 0.85 0.95 .10
H .88 0.92 0.04 0.98 0.99 .01 0.63 0.73 .10 0.88 0.92 .04
(H) .81 0.87 0.06 0.96 0.97 .01 0.65 0.83 .18 0.87 0.95 .08
Hd .75 0.74 –0.01 0.94 0.97 .04 0.69 0.88 .19 0.89 0.97 .08
(Hd) .64 0.67 0.03 0.92 0.96 .04 0.67 0.75 .09 0.90 0.93 .03
Hx .26 0.40 0.13 0.97 0.98 .02 0.62 0.77 .16 0.85 0.92 .07
A .92 0.96 0.04 0.98 0.99 .01 0.56 0.88 .32 0.84 0.96 .12
(A) .71 0.78 0.08 0.92 0.96 .04 0.60 0.66 .06 0.86 0.90 .04
Ad .81 0.90 0.09 0.97 0.99 .02 0.62 0.78 .16 0.90 0.95 .05
(Ad) .44 0.44 0.00 0.86 0.85 –.01 0.81 0.87 .05 0.97 0.98 .01
An .81 0.61 –0.20 0.98 0.99 .01 0.76 0.84 .08 0.90 0.95 .05
Art .73 0.86 0.14 0.94 0.94 .00 0.66 0.86 .20 0.91 0.98 .07
Ay .72 0.70 –0.02 0.95 0.97 .02 0.68 0.69 .02 0.88 0.90 .03
Bl .89 0.92 0.02 0.99 0.99 .01 0.82 0.90 .08 0.89 0.93 .04
Bt .90 0.93 0.03 0.97 0.99 .01 0.58 0.76 .18 0.88 0.94 .06
Cg .85 0.89 0.04 0.92 0.95 .04 0.62 0.79 .17 0.88 0.95 .07
Cl .91 0.90 –0.01 0.75 0.78 .04 0.80 0.84 .04 0.80 0.84 .04
Ex .70 0.69 –0.01 1.00 1.00 .00 0.72 0.79 .07 0.97 0.98 .01
Food .88 0.90 0.01 0.95 0.97 .02 0.71 0.83 .12 0.94 0.96 .02
Fi .91 0.88 –0.03 0.91 0.93 .02 0.74 0.87 .14 0.91 0.96 .06
Geog .82 0.80 –0.02 1.00 1.00 .00 0.86 0.84 –.02 0.92 0.91 –.01
Hh .73 0.64 –0.09 0.95 0.96 .01 0.64 0.74 .10 0.86 0.92 .05

(continued)
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TABLE 7 (Continued)

Student Experienced 30% Error 10% Error

κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference

Ls .68 0.72 0.04 0.94 0.95 .02 0.70 0.87 .17 0.89 0.94 .05
Na .75 0.86 0.11 0.88 0.88 .00 0.64 0.72 .07 0.90 0.94 .04
Sc .78 0.85 0.07 0.96 0.97 .01 0.67 0.78 .12 0.90 0.94 .04
Sx .74 0.89 0.15 0.94 0.96 .02 0.69 0.82 .12 0.86 0.95 .09
Xy .93 0.95 0.02 1.00 1.00 .00 0.83 0.87 .03 1.00 1.00 .00
Idio .50 0.66 0.16 0.96 0.97 .02 0.48 0.51 .03 0.77 0.82 .05
Popular .84 0.80 –0.04 0.98 0.98 .01 0.56 0.59 .03 0.84 0.80 –.04
Zf .86 0.95 0.08 0.96 0.99 .03 0.55 0.89 .34 0.85 0.98 .13
DV1 .58 0.72 0.13 0.81 0.85 .04 0.63 0.58 –.04 0.89 0.93 .04
INC1 .35 0.61 0.26 0.73 0.76 .03 0.65 0.85 .21 0.89 0.93 .05
DR1 .57 0.82 0.26 0.83 0.90 .07 0.67 0.91 .24 0.91 0.98 .07
FAB1 .53 0.62 0.09 0.83 0.91 .07 0.73 0.87 .15 0.90 0.97 .06
ALOG .58 0.65 0.07 0.66 0.86 .19 0.69 0.86 .16 0.88 0.94 .07
CONTAM .00 1.00 1.00 0.67 0.65 –.02 1.00 1.00 .00 1.00 1.00 .00



sify all responses on these dimensions, they were much more able to agree on
which protocols contained many or few scores for disrupted thought processes. As
an extreme example, for a protocol one rater could have assigned the scores DR1,
FAB2, DR2, and FAB1 to responses 3, 5, 7, and 9, respectively. A second rater
could assign DR2, FAB1, DR1, and FAB2 to the same responses. The raters would
have no response-level agreement for these scores although they would have per-
fect summary score agreement.

Table 7 also reveals occasions in which the data do not fit the expected pattern.
For instance, FT, Y, and An in the student coder sample and TF and DV2 in the ex-
perienced rater sample all have ICC values that are noticeably lower than their cor-
responding κ values. Some of these unexpected findings reflect very minor
differences (e.g., Hd or Cl in the student sample). However, the other instances il-
lustrate an important point about Rorschach scoring. All scoring errors are not ran-
dom events. Rather, coders may have a peculiar interpretation of some coding
rules or they may have lapses in which they consistently fail to attend to a certain
variable. Both of these problems can result in rater-specific systematic scoring er-
rors rather than random scoring errors. Consider FT, Y, and An in the student rater
sample and TF and DV2 in the experienced rater sample. For each score, a single
protocol was an outlier for the ICC calculations. In each instance, one scorer did
not code the variable (i.e., assigned a score of 0), whereas the other coded it more
frequently (assigning scores of 3, 2, 8, 2, and 2, respectively). When the single out-
lier protocol was removed for each variable, the summary score ICC value then
equaled or exceeded the response-level kappa value, as would be expected by
psychometric theory.

The most dramatic ICC versus κ disparity occurred for the An score in the stu-
dent sample. For one protocol, the target patient produced eight sexual responses.
Both raters always agreed that sex (Sx) was the primary content category for these
responses. However, one rater consistently coded human detail (Hd) as the sec-
ondary content for these responses, whereas the other rater always coded anatomy
(An) as the secondary content. With this outlier protocol removed, the ICC jumped
from .61 to .86. However, even smaller disparities can have a substantial impact on
the ICC values. This is particularly true when the score under consideration is rare.
For instance, in the experienced coder sample, both raters agreed that one protocol
should have a DV score on two of the responses. However, Rater 1 assigned a DV1
to both responses, whereas Rater 2 assigned a DV2 to both responses. The net re-
sult was that the DV2 score for this protocol was 0 for Rater 1 and 2 for Rater 2.
This is a small difference. However, DV2 scores are quite rare and this became the
largest discrepancy in the whole sample of 65 protocols. With this one case re-
moved, the ICC value for DV2 scores jumped from .49 to 1.00.

Overall, although aggregating scores across responses allows random errors of
measurement to cancel out, these data highlight a critical principle. Not all CS
scoring disparities are due to random error. At times, systematic scoring error may
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be present on the part of one rater. This can occur when a rater consistently ne-
glects a score, misunderstands the scoring rules, is consistently conservative in as-
signing scores, or is consistently liberal when assigning scores. When these kinds



TABLE 8
Percentage Agreement, Actual Kappa, and Estimated Kappa Values for the Reliability of Comprehensive System Response Segments

in the Clinical Samples

Segment (No. of
Scores)

Sample 1 Studentsa Sample 2 Experiencedb Sample 3 (k = 2) Clinicianc Sample 4 Appliedd Sample 5 Compositee

%A κ Estimated κ %A κ Estimated κ %A κ Estimated κ %A κ Estimated κ %A κ Estimated κ

Location & Space (4) .90 .86 .86 .98 .98 .98 1.00 1.00 1.00 .97 .96 .96 .96 .94 .94
Develop Quality (4) .92 .83 .86 .96 .92 .93 0.98 0.97 0.97 .99 .97 .97 .96 .92 .93
Determinants (28f) .73 .67 .65 .91 .89 .89 0.89 0.88 0.87 .83 .80 .80 .83 .80 .80
Form Quality (5) .82 .72 .70 .97 .96 .96 0.90 0.83 0.85 .97 .95 .95 .92 .88 .88
Pairs (1) .93 .83 .82 .99 .98 .98 1.00 0.99 0.99 .98 .96 .96 .97 .93 .93
Contents (27) .76 .74 .70 .93 .93 .92 0.97 0.96 0.96 .93 .92 .91 .88 .87 .86
Populars (1) .95 .84 .87 .99 .98 .98 0.99 0.99 0.98 .99 .97 .97 .98 .93 .93
Cog Sp Sc (10) .89 .58 .63 .94 .82 .89 0.90 0.79 0.80 .89 .75 .77 .90 .74 .80
Other Sp Sc (10) .86 .78 — .93 .90 — 0.93 0.91 — .90 .86 — .90 .85 —
Other Sp Sc–Old (8) .91 .77 .76 .95 .88 .88 0.95 0.89 0.88 .93 .83 .84 .93 .83 .84
All Sp Sc (20) .78 .71 — .89 .86 — 0.86 0.83 — .82 .79 — .83 .79 —
All Sp Sc–Old (18) .82 .67 .68 .90 .84 .86 0.86 0.80 0.80 .84 .75 .77 .85 .76 .79

M .86 .75 .75 .95 .92 .93 0.94 0.91 0.91 .93 .89 .89 .92 .86 .87
M difference:

Actual κ – estimated κ .0011 –.0095 –.0003 –.0037 –.0097

Note. Values were rounded to two decimal places after all calculations were completed. The mean and mean difference were computed from just the segments with estimated
κ values. %A = percentage agreement; κ = kappa calculated directly from the sample data; estimated κ = kappa estimated using the formula and chance agreement rates presented
in Meyer (1997a, Table 1); Develop = Developmental; Cog = Cognitive; Sp Sc = Special Scores; Old = segment does not include GHR and PHR.

aResponses = 1,407. bResponses = 1,299. cResponses = 388. dResponses = 1,667. eResponses = 4,761. fPure Form was considered the default option when no other
determinants were scored rather than as a code that could be assigned independently and in conjunction with all the other determinants.



ment calculated from within each sample, and (c) κ values that were estimated using
the formula and chance agreement rates proposed by Meyer (1997a). For Sample 3,
we again used data randomly selected from two of the five raters.

To estimate κ for each response segment, chance agreement (CA) rates were
obtained from the five types of samples reported in Table 1 of Meyer (1997a).
Because CA rates are determined by the base rate for all score options in a re



Results From This Study Compared to the Published
Literature on CS Reliability

Finally, we compare the results from our investigations to the sample weighted re-
sults obtained from all the other published studies we know of that have reported
chance-corrected interrater reliability coefficients for CS scores. These studies
were identified by consulting articles that reviewed prior research on CS reliability
(e.g., Acklin et al., 2000; McDowell & Acklin, 1996; Meyer, 1997a; Viglione &
Hilsenroth, 2001) and by conducting a thorough PsycINFO database search that
covered the recent literature. The latter identified all articles with the word Ror-
schach in the title or abstract published in the 4-year period from 1997 through De-
cember, 2000. The 247 abstracts identified through this search were reviewed and
winnowed by excluding those in a language other than English, reviews and
nonempirical articles, and those that clearly addressed scoring systems other than
the CS. The 70 articles that remained were then manually inspected to see if they
provided chance-corrected (i.e., κ or ICC) reliability coefficients for CS scores.10

Table 9 presents the relevant information for summary scores, individual scores
at the response level, and response segments. For our study, the average summary
score was obtained from Table 2, the average coefficient for individual scores at
the response level was obtained from Table 6 (using the composite clinical sam-
ple), and the average for response segments was obtained from Table 8 (again us-
ing the composite clinical sample).



From the published literature, summary score coefficients were obtained from
Acklin et al.’s (2000) clinical and nonpatient samples; Franklin and Cornell
(1997); Greco and Cornell (1992); Netter and Viglione (1994); Ornduff, Centeno,
and Kelsey (1999); and Perry and Viglione (1991). Results from Meyer et al.
(2000) were not used because their reliability protocols were already part of our
study. From Acklin et al. we only used the statistically stable scores. Greco and
Cornell just reported that all ICC values were > .85. Conservatively, the value of
.86 was used as the mean for this study. Netter and Viglione reported that one score
had an ICC of .90, whereas the remaining six scores had ICC values > .95. Conser-
vatively, the latter were assumed to average .96. For Ornduff et al. it was unclear
whether intraclass correlations were reported for two raters or four raters. Given
the ambiguity, we conservatively assumed just two raters.

For individual scores at the response level, reliability coefficients were ob-
tained from Acklin et al. (2000); Baity and Hilsenroth (1999); Hilsenroth, Fowler,
and Padawer (1998); Krishnamurthy, Archer, and House (1996; Archer &
Krishnamurthy, 1997); Perry and Braff (1994); Perry, Potterat, Auslander,
Kaplan, and Jeste (1996); Shaffer, Erdberg, and Haroian (1999); and Young, Jus-
tice, and Erdberg (1999). Krishnamurthy et al. reported the mean κ value for indi-
vidual scores that fell within response segments. Perry and Braff just reported that
κ values were between .88 and .97, so the mean of these two values was used in
calculations. The total number of responses (R) was estimated by assuming 20 re-
sponses per protocol. Perry et al. (1996) reported that κ values were between .74
and .82, so the mean of these two values was used in calculations. Total R was esti-
mated from their Table 3. Young et al. reported that κ values were between .75 and
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TABLE 9
Comprehensive System Reliability in the Current Samples Relative to the Published Literature

This Study Published Literature All Available Data

No. Var N M κ/ICC No. Var Na κ/ICC No. Var Na M κ/ICC

Summary
scores 164 219 .90 2–85 455 .93 2–164 674 .92

Individual
scores 108 4,761 .84 2–88 8,398 .83 2–108 13,159 .83

Response
segments 10 4,761 .86 4–10 7,247b .85 4– 10 12,008c .86

Note. No. Var = number of scores or segments considered in each study; ICC = intraclass correlation
coefficient.

aStudies reporting pairwise agreement rates or multirater coefficients were treated as containing replicated
samples across the rater pairs. As such, the N for these studies was calculated as the number of target protocols or
responses coded times the number of unique observer pairs. bThis is the average number of responses coded across
studies (range from 1,400 to 14,003 responses per segment; Mdn = 6,221). c This is the average number of responses
coded across studies (range from 6,161 to 18,764 responses per segment; Mdn = 10,982).





ing 69 protocols initially scored as part of everyday clinical practice and then
rescored by researchers (R = 1,667), and (e) a composite clinical sample containing
2 independent ratings of 219 protocols (R = 4,761) that were derived from the four
previous samples. The remaining three samples examined 57 experimentally ma-
nipulated protocols (R = 1,378) in which 10%, 20%, and 30% of all scores were re-
placed with randomly generated erroneous scores. Across all samples, reliability
coefficients were generally excellent, with median ICC coefficients of .85, .96, .97,
.95, .93, .95, .89, and .82, respectively, across the 133 to 143 statistically stable
summary scores in each sample.13 Not surprisingly, the sample containing 30%
random error produced the lowest reliability coefficients. However, even in this
sample reliability remained quite high.

When the four distinct clinical samples were combined to form a single com-
posite sample of 219 protocols and 4,761 responses, the median and mean
interrater reliability coefficients were .92 and .90, respectively across all 164 struc-
tural summary variables that could be evaluated. No variables had poor reliability.
Instead, 1 variable (TF) had fair reliability, 7 were classified as having good
interrater agreement, and the remaining 95% of the variables were classified as
having excellent reliability. These data indicate unequivocally that CS scoring
rules are sufficiently clear and unambiguous to produce highly reliable summary
scores when reasonably trained raters independently code the same responses.

Previously, Wood, Nezworski, and Stejskal (1996, 1997; also see Garb et al.,
2001; Lilienfeld et al., 2000; Wood & Lilienfeld, 1999) suggested CS reliability
may be poor and they asserted that proper reliability studies would demonstrate
how some CS scores were reliable, whereas others were not. Unfortunately, there
was never evidence to support these suppositions. Rather, all the available data had
suggested Rorschach scoring was reliable (cf. Table 9 and Meyer, 1997a, 1997c).
When the historical literature is considered in conjunction with the evidence as-
sembled here, one must conclude that the assertions of poor reliability were erro-
neous. Because the Rorschach has held a contentious place in psychology’s
history, claims of poor reliability may have emerged from negative attitudes to-
ward the Rorschach as a method of assessment rather than from an understanding
of the instrument and an appreciation of the available empirical literature.

The analyses we report here demonstrate several additional points. First, re-
sponse-level reliability coefficients provide more conservative estimates of CS
interrater agreement than summary score coefficients. Second, across samples it
was evident that practicing clinicians produced excellent interrater reliability coef-
ficients that were equivalent to those of researchers. Third, Rorschach summary
scores function like other types of psychometric scales. When scores are aggre-
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gated across responses, random item-level errors tend to cancel out making the
summary values more reliable. This effect appears most pronounced in samples
that initially contain more response-level random errors.

Some may wonder which type of coefficient is the most appropriate for CS reli-
ability: the ICC for summary scores, κ for response segments, or κ for individual
scores? We believe the answer depends on the goal of the reliability analysis. If the
analysis is designed specifically to examine the extent to which two raters under-
stand and agree on the CS scoring rules, it would be appropriate to focus on the re-
sponse-level reliability of individual scores (although see Meyer, 1997a, and
Table 4 and 5 for cautions when using small samples). Conversely, if the goal is to
understand the applied reliability of the CS for research or practice, it would be
most appropriate to focus on summary score ICCs because summary scores are
generally used for statistical analyses or clinical decision making.

If researchers are interested in documenting that CS scoring is reliable simply
as a precursor to investigating validity (cf. Weiner, 1991), it may be most appropri-



ers should probably calculate κ or ICC coefficients on individual scores only when
they have sufficiently large samples (e.g., 50 to 60 protocols) to ensure adequate
and representative between-subjects variance across all the scores under consider-
ation. Of course, increasing the size of a reliability sample also increases the time
required to compute κ or ICC coefficients for individual scores.

One advantage of computing reliability coefficients for response segments is
that they are less affected by relatively small samples. The reason is a function of
chance agreement rates. Even in small clinical samples, it is quite unlikely for rat-
ers to agree by chance alone on all the Determinant scores, all the Content scores,
all the Special Scores, and so forth (Meyer, 1997a). By contrast, it would not be
surprising for a sample of 20 protocols to have, for example, only one C'F score,
one (Ad) score, or one FAB2 score. Assuming each protocol had an average of 20
responses, these rare scores would then have a kappa-defined chance agreement
rate of .995. This base rate leads to estimates of chance-corrected reliability that
are statistically very unstable.

This study also demonstrated that the formula used in Meyer’s (1997a) meta-
analysis to estimate response segment κ values was accurate. Thus, the results
from that study are stable and generalizable. However, researchers interested in
generating κ for response segments should use the more precise and simple steps
developed by Meyer (1999) or the even more sophisticated procedures developed
by Janson and Olsson (2001).

Although this study reports important positive conclusions for CS reliability,
readers should be equally clear about conclusions that are not warranted by these
data. In particular, it is not the case that anyone who uses the CS is automatically a re-
liable scorer. Such a conclusion is patently false. The CS is a complex coding system
that requires knowledge of many rules and benchmarks for accurate discrimination.
These rules and benchmarks are only acquired through systematic training and prac-
tice; therefore, only well-trained individuals will score accurately. It is reassuring to
know that coders have at their disposal a classification system that can be reliably
implemented. However, the act of classifying Rorschach responses ultimately de-
pends on the coder, not the scoring system. Thus, reliable use of the CS is dependent



ticle. We also appreciate the input from five reviewers who commented on previous
versions of this article.
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