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Review

Hypothalamic pathways linking energy balance and reproduction
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Hill JW, Elmquist JK, Elias CF. Hypothalamic pathways
linking energy balance and reproduction. Am J Physiol Endocrinol
Metab 294: E827–E832, 2008. First published February 19, 2008;
doi:10.1152/ajpendo.00670.2007.—During periods of metabolic
stress, animals must channel energy toward survival and away from
processes such as reproduction. The reproductive axis, therefore, has
the capacity to respond to changing levels of metabolic cues. The
cellular and molecular mechanisms that link energy balance and
reproduction, as well as the brain sites mediating this function, are still
not well understood. This review focuses on the best characterized of
the adiposity signals: leptin and insulin. We examine their reproduc-
tive role acting on the classic metabolic pathways of the arcuate
nucleus, NPY/AgRP and POMC/CART neurons, and the newly iden-
tified kisspeptin network. In addition, other hypothalamic nuclei that
may play a role in linking metabolic state and reproductive function
are discussed. The nature of the interplay between these elements of
the metabolic and reproductive systems presents a fascinating puzzle,
whose pieces are just beginning to fall into place.

gonadotropin-releasing hormone; leptin; insulin; kisspeptin

SINCE ANIMALS UNDER METABOLIC STRESS must invest energy in
survival first and reproduction second, the reproductive axis
has the capacity to respond to changes in caloric status. Indeed,
every level of the reproductive axis, the hypothalamus, pitu-
itary gland, and gonad, has the capacity to respond to metabolic
cues. In humans, anorexia, cachexia, and excessive exercise
can all shut down reproductive cyclicity and the secretion of
gonadal steroids that are essential for the health of many organs
and tissues (28, 57). On the opposite end of the spectrum,
obesity and diabetes can also negatively affect fertility (74, 92).
The mechanisms regulating these processes are not well un-
derstood, but recent work has begun to yield new insights.

While long recognized, the exact nature of the relationship
between energy stores and fertility has been somewhat contro-
versial. Work in rodent models (55) and human subjects (40,
41) gave rise to the idea that a female’s fat reserves must
exceed a critical threshold for ovulation to occur. However, it
has now become clear that the body allocates energy based on
current energy balance as opposed to the absolute amount of
stored adipose tissue. Ovulation is suppressed when a mammal
is in negative energy balance whether that state is caused by
inadequate food intake, excessive locomotor activity, or heavy
thermoregulatory costs. In the mouse, ovulation occurs when-
ever extant energetic conditions permit, unless the process is
blocked by nonmetabolic stress, social cues, or a predictive
seasonal cue such as photoperiod. Mice in the wild often

continue to ovulate and become pregnant during seasons of
famine despite lacking the energy reserves to carry a litter to
term (12). In the human, menstrual irregularities, amenorrhea,
and infertility can result from inadequate food intake to com-
pensate for energy demands; for instance, when a severe
athletic training schedule is relaxed, luteinizing hormone (LH)
pulses and menstrual cycles resume without a significant in-
crease in body fat content (2, 31). The sensitivity of the
reproductive axis to current energy availability has been high-
lighted by recent work suggesting that even subtle declines in
energy availability can produce clinically recognized menstrual
disturbances (29).

The hypothalamus plays a crucial role in maintaining fertil-
ity in all mammals. The GnRH neurons within the preoptic
area control the secretion of pituitary LH via the pulsatile
release of GnRH from their terminals in the median eminence
into the hypophysial portal blood vessels. On a minute-to-
hourly basis, the GnRH pulse generator is extremely sensitive
to energetic stress. GnRH pulses are readily suppressed by
food restriction, high or low ambient temperature, or excessive
exercise, and GnRH pulsatility returns rapidly when the ener-
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the only evidence supporting that assertion comes from con-
ditionally immortalized GnRH-expressing cell lines that have
been reported to be insulin responsive (78). Given the inherent
limitations of extrapolating data from cell lines to animals,
in vivo data must be obtained to settle this issue. While
standard approaches to this question are available, genetic
techniques now allow the targeted deletion of receptors from
specific neuronal subtypes. It is hoped that the phenotype of
mice lacking IR expression in GnRH neurons will soon be
reported.

Leptin. The cloning of the ob gene in 1994 by Friedman and
associates resulted in the discovery of another physiologically
important adiposity signal secreted by fat tissue: leptin (100).
Mice and humans lacking leptin (ob/ob mice) or the leptin
receptor (db/db mice) develop hyperphagic morbid obesity and
insulin resistant diabetes (22). Moreover, sufficient levels of
leptin are a prerequisite for successful reproduction. Leptin
administration blunts the fasting-induced suppression of LH
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reproductive deficits associated with leptin-deficient states may
be attributable to diminished expression patterns of KiSS-1 or
its receptor. Nevertheless, whether leptin is solely acting on
KiSS-1 neurons in the central control of GnRH or whether
additional peripheral regulators cooperate with leptin in the
control of KiSS-1 for the integration of energy balance remains
to be elucidated. The use of genetic mouse models that allow
the deletion or reactivation of KiSS-1 gene in specific neurons
will provide crucial access to this pathway.

Summary

We have entered an exciting era for the study of metabolic
regulation of reproductive function. Our knowledge of the
hypothalamic circuitry involved in monitoring energy balance
and providing input to GnRH neurons continues to expand
rapidly. We have discussed only a few of the neuropeptides
and hormones involved, and no doubt more are waiting to be
discovered. A major goal of future research should therefore be
not only to discover individual players communicating energy
status to the reproductive axis but also to understand how each
fits within the neuronal network connecting these two critical
systems. Many relationships remain to be elucidated (Fig. 1).
Pursuit of these questions will yield a greater understanding of
the central control of reproduction and holds out the hope of
addressing the clinical impact of impaired fertility and steroid
production due to metabolic causes.
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