University of Toledo, Department of Physics and Astronomy

Ph.D. Qualifying Exam

Fall 2021 October 16

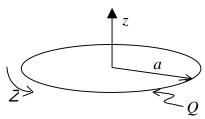
Instructions:

- x Do not write your name on your exam; put your chosen letter on every sheet of paper that you turn in.
- x Work 2 out of 3 problems in each category.
- x Begin each problem on a new sheet of paper.
- x Be sure to state which problems are omitted.

CLASSICAL MECHANICS

- 1. A ring of mass *m* and radius R is suspended under the influence of gravity from a point on its circumference.
 - a. Assuming that all motions are in the plane of the ring, write down the Lagrangian as well as the dynamical equation of motion.
 - b. Use these results to determine the period of oscillation in the small-angle approximation.
- 2. A particle of mass *m* and speed v undergoes an elastic collision with a rod of mass m and length L which is initially at rest as shown in the diagram below. Determine the speed v₁ of the particle, speed v₂ of the center-of-mass (CM) of the rod, and angular velocity Zof rotation about the CM of the rod after the collision. (Note: you can assume that both the particle and rod slide freely on a horizontal surface without friction.)

3. A point mass *m* is constrained to move on a massless hoop of radius R fixed in a vertical plane that rotates about its vertical symmetry axis with constant angular speed Z Obtain the Lagrange equations of motion assuming that the only external forces arise from gravity. Show that if Z ! Z (where Z₀ is a critical value) there exists a solution in which the particle remains stationary on the hoop at a point other than the bottom of the hoop, but if Z Z the only stationary point for the particle is at the bottom of the hoop. What is the value of Z?


ELECTRICITY & MAGNETISM

1. A charge density

$$= 0$$

is placed inside a grounded conducting spherical shell of radius a.

- a. Find the total charge induced on the inner surface (=) of the conducting shell.
- b. Find the electric field () inside the shell.
- c. What is the electrostatic potential () inside the shell?
- 2. Consider a "point" dipole with dipole moment = Z placed at the origin of a grounded conducting spherical shell of radius a. Note: a point dipole is one in which the charge separation vanishes while the dipole strength p is held fixed.
 - a. First ignore the conducting shell, and write down an expression for the electrostatic potential (,) at small distances ().
 - b. Now include the spherical conducting shell and solve for the electrostatic potential at all positions within the interior of the sphere (0 < <). Hint: In the limit of small r, your expression should match the answer for part (a).
 - c. Find the surface charge density () induced on the interior surface of the spherical shell.
- 3. A non-conducting ring of radius a has a total charge Q distributed uniformly along its circumference. The ring rotates about its symmetry axis with an angular frequency

- a. What is the current *I* carried by the ring?
- b. What is the magnetic field B (direction and magnitude) at the center of the ring?
- c. What is the magnetic field B at very large distances ? Note: The magnetic vector potential for a point dipole at the origin is

$$=\frac{\mu_0}{4}\frac{\times}{3}.$$